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Abstract

Recent developments have revealed that global symmetries of physical systems can be de-

scribed and reconstructed from topological defects of various codimensions, which constrain

the dynamics of the theory [1]. These defects can be locally deformed and fused accord-

ing to the discrete combinatorial data of a structure known as a fusion category—without

affecting the underlying physics. This realization has sparked a surge of new results and

unprecedented interdisciplinary collaboration across mathematics [2, 3], high-energy theory

[4, 5], and condensed matter physics [6, 7, 8].

Structures and symmetries that were once seen as niche or exotic are now being understood

as part of a broader unifying mathematical framework. While category theory and higher

structures often lie outside the standard training of physicists —and many of the first

examples of categorical symmetries are very unfamiliar to mathematicians —these modern

methods emerge naturally in some of the simplest physical models, and the underlying

mathematics is surprisingly intuitive.

In this thesis, we explore how the language of topological defects and fusion categories arises

directly from studying the simplest and most fundamental classical lattice model: the 2D

Ising model. Beginning with the physics of the early nineteenth century, we develop from

the ground up the theories of classical and quantum statistical mechanics, duality, gauge

symmetry, conformal field theory, and non-invertible symmetries. My goal is to demonstrate

how topological and categorical structures are not merely abstract and esoteric mathematical

formalisms, but are in fact necessary to study even the most familiar and ubiquitous physical

theories.

i



List of Figures

2.1 A particular configuration of the 2D Classical Ising Model [15] . . . . . . . . 9

2.2 Configurations of link variables that contribute to the partition function . . . 12

2.3 The original lattice (in red) along with its dual lattice (in blue). . . . . . . . . 12

2.4 Arbitrary vertex i with four surrounded plaquettes labeled 1, 2, 3, 4. . . . . . 13

2.5 Dual coupling plotted against original coupling . . . . . . . . . . . . . . . . . 15

2.6 Visualization of the Transfer Matrix Between Rows k and k + 1 . . . . . . . . 21

3.1 Lattice and Dual Lattice for 1d Quantum Ising Model . . . . . . . . . . . . . 28

3.2 Action of µz
i+ 1

2

on the dual lattice . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Z2 Principal Bundle over the Circle . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Action of conjugation by σxi+1 on H
(i, i+1)
η (movement) and H

(i, i+1); (i+1, i+2)
η; η

(fusion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Projection operator for fusion redundancies on site j . . . . . . . . . . . . . . 34

3.6 Gj simplified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Morphism from (+−+−−+) to (−−+−) . . . . . . . . . . . . . . . . . . . 46

4.2 Composition of morphism with identity . . . . . . . . . . . . . . . . . . . . . 46

4.3 Fusion of Two Adjacent Defects . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Visualization of ”associativity” of topological defects . . . . . . . . . . . . . . 54

4.5 Triangle identity diagram for a monoidal category . . . . . . . . . . . . . . . 54

4.6 Pentagon identity diagram for associators in a monoidal category . . . . . . . 54

4.7 Local deformation of Dϵ(γ) to Dϵ(γ′) . . . . . . . . . . . . . . . . . . . . . . . 62

4.8 Close-up of Figure 4.7 at the site of deformation . . . . . . . . . . . . . . . . 63

4.9 Other kind of local deformation of Dϵ(γ) . . . . . . . . . . . . . . . . . . . . . 63

4.10 Bubble popping (left) and recoupling (right) relations for Dϵ . . . . . . . . . 63

4.11 Operator insertion of σi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.12 Local cancellation of two parallel Dϵ defects . . . . . . . . . . . . . . . . . . . 64

4.13 Trivalent junction of A defects (purple lines) at a vertex v . . . . . . . . . . . 65

4.14 Canceling loops of A defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.15 Definition of four-valent vertex of A defects . . . . . . . . . . . . . . . . . . . 66

4.16 Gauging via network of A defects . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.17 Local deformations of the gauging interface . . . . . . . . . . . . . . . . . . . 67

4.18 Invertible D defect (orange line) mapping original gauged Ising model to dual

Ising model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.19 Fusion of G and D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

ii



LIST OF FIGURES iii

4.20 Two adjacent gauge interfaces fusing together . . . . . . . . . . . . . . . . . . 69



List of Tables

3.1 Primary fields in the critical 2D Ising CFT and their conformal weights. . . . 43

4.1 Comparison between 2-vector spaces and ordinary vector spaces . . . . . . . . 52

iv



Table of Contents

List of Figures i

List of Tables iii

Acknowledgements vi

1 Introduction 1

2 The 2D Classical Ising Model 5

2.1 Crash Course in Classical Statistical Mechanics . . . . . . . . . . . . . . . . . 5

2.2 Introducing The Classical Ising Model . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Kramers-Wannier Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Introducing the Transfer Matrix: A Path Integral Suitable for Mathematicians 16

2.5 Crash Course in Quantum Statistical Mechanics . . . . . . . . . . . . . . . . 18

2.6 From Classical to Quantum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 The 1d Transverse Field Ising Model 25

3.1 Symmetries and their Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 A First Look at Topological Defects . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Kramers-Wannier Duality from Gauging . . . . . . . . . . . . . . . . . . . . . 32

3.4 Fermionization of the Ising Model . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 A Peek into Conformal Field Theory . . . . . . . . . . . . . . . . . . . . . . . 41

4 Fusion Categories and Topological Defects 45

4.1 Why Category Theory? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 What is a 2-Vector Space? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 What is a Monoidal Category? . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 What is a Fusion Category? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 An In-Depth Look at Topological Defects in the 2d Classical Ising Model . . 61

5 Conclusion 71

v



Acknowledgements

To my first love, Alexis. Thank you for encouraging and allowing me to fall for my second

love, mathematical physics.

I am also deeply indebted to my mentor, Adrian Ocneanu. While this thesis is entirely

my own creation, I am forever grateful that you welcomed me into your beautiful world of

mathematics and physics. The intuitive and visual approach to mathematical physics that

I have learned from you now guides not only my work, but also how I perceive the world on

a fundamental level. Thank you for helping me to rewire my brain and gain the confidence

to see connections between things that I never thought possible, and for teaching me to

construct my own unique understanding of even the most basic concepts.

vi



Chapter 1

Introduction

Given a discrete collection of sites that each host a magnetic dipole moment of atomic spins

pointing either up (+1) or down (−1), how do macroscopic properties like ferromagnetism

arise in materials? This is the question that was posed by physicist Wilhelm Lenz to

his PhD student Ernst Ising in 1920. With the benefit of hindsight, this question was

incredibly cruel to ask to a young PhD student; nevertheless, in his 1924 PhD thesis [9],

Ising ultimately introduced and analytically solved a statistical mechanical system on a 1

dimensional lattice – the aptly named Ising model – which provides a partial answer to

Lenz’s question. Unknowingly, Ising’s work opened a pandora’s box of rich mathematical

structures in topology, category theory, representation theory, and topological/conformal

field theories that arise naturally from his namesake model and its classical and quantum

cousins. Similar in spirit to [10], my intention is for this thesis to serve as a stepping stone

between the physics and mathematics perspectives on lattice models. Allowing for such

dialogue between condensed matter physics and pure mathematics is crucial to the joint

developments of both fields.

The single most fundamental problem looming over physicists of the 21st century is the so-

called “strong coupling problem.” That is, to rigorously understand the behavior of quantum

many body systems and quantum field theories whose interactions are too strongly coupled

that they lie beyond the usual low-energy approximation regime of perturbation theory.

Beyond just demonstrating an inaptitude of mathematical rigor, strongly coupled quantum

systems —in both the discrete and field-theoretic context —display exotic behavior which

frequently force physicists to reconsider all of their existing models of nature. This chaotic

atmosphere creates a breeding ground for brand new mathematical structures as the line

between physics and mathematics becomes increasingly blurred.

For instance, while physicists had largely accepted Landau theory’s theory of symmetry

breaking as providing the classification and characterization of all possible phases of matter

and the transitions between them, a flurry of experimental discoveries in the 1980’s, begin-

ning with the fractional quantum hall (FQH) effect, demonstrated how this theory breaks

down in strongly coupled systems. Specifically, the FQH exhibited states which, despite

being in different phases, obeyed the same symmetries. Not only this, but FQH excitations

1



CHAPTER 1. INTRODUCTION 2

had charges that were equal to fractions of the charge of the electron (previously thought

to be the smallest unit of charge) and had exchange statistics that were neither bosonic nor

fermionic.

Discoveries such as FQH, high Tc superconductors, chiral spin liquids, and Witten’s con-

struction of the Chern-Simons topological quantum field theory from the Jones Polynomial

motivated Xiao-Gang Wen to coin the term topological order. This refers to states that

have properties including, but not necessarily limited to, topological ground state degen-

eracy, anyonic excitations, long range entanglement, and a robustness against low-energy

perturbations. These new phases of matter could not be described by local order parame-

ters or spontaneous symmetry breaking, and thus fell outside the scope of Landau theory.

Instead, their defining features were intrinsically non-local and topological in nature. To

characterize such phases, physicists turned to new mathematical structures that could en-

code non-trivial braiding and fusion of excitations, ground state degeneracy on nontrivial

manifolds, and the topological interactions of defects.

This led naturally to the study of topological defects, extended objects that can be in-

serted into a quantum field theory without changing local observables, but which carry global

data about the topological phase. These defects —lines, surfaces, or higher-dimensional gen-

eralizations —can be manipulated, deformed, and fused in ways that obey intricate algebraic

relations. Remarkably, these fusion and braiding rules are not arbitrary: they are governed

by the axioms of a (higher) fusion category, a mathematical structure that formalizes how

objects (like anyons or defect lines) combine and interact.

Fusion categories provide a unifying language for describing the algebra of anyonic exci-

tations in topologically ordered systems, and more broadly, for organizing the behavior of

topological defects in a wide class of quantum field theories. In particular, they encode

not only the fusion rules of excitations but also the internal symmetries of a topological

phase —including so-called categorical symmetries that generalize ordinary group symme-

tries. Thus, the study of topological order, born from physical puzzles like the FQHE, has

ultimately led to a deeper understanding of quantum phases through the lens of higher

algebra, category theory, and topological field theory.

On the high-energy side, the landscape is more speculative. It has long been recognized that

our current formulation of quantum field theory is mathematically incomplete. The central

object of QFT —the path integral —is often ill-defined and typically requires perturbative

expansions to extract any meaningful physical predictions. This limitation becomes partic-

ularly stark in the study of strongly coupled systems, such as quantum chromodynamics,

which lie beyond the reach of perturbative methods.

In the absence of transformative experimental breakthroughs in high-energy physics, a

promising direction is to leverage the new mathematical structures that have proven success-

ful in condensed matter contexts—especially those related to topological order—to deepen

our understanding of quantum field theories in the non-perturbative regime. In fact, high-

energy physicists are no strangers to topological defects and fusion categories; some of the

earliest examples arose in the study of rational conformal field theories, where defect lines

and modular tensor categories play a central role in encoding operator algebras and dualities.



CHAPTER 1. INTRODUCTION 3

Many of the most promising approaches to quantum gravity also make essential use of these

structures. For instance, the Ponzano–Regge and Turaev–Viro-Ocneanu models successfully

discretize 3D gravity by triangulating spacetime and associating objects and morphisms

from tensor categories to the vertices, edges, faces, and tetrahedra of the triangulation [11,

12]. Similarly, string theory makes extensive use of categorical structures by evolving a 2D

worldsheet —governed by conformal field theory —through higher-dimensional spacetimes

in order to echo the role of topological defects and tensor categories in capturing interactions

and symmetry.

In order to truly capture the essence of the beauty of conformal field theory and generalize it

to more complicated models, we need to develop higher categorical mathematics with which

we can fill spacetime itself with algebraic computations through networks of topological

defects of various codimensions.

Our job as theoretical physicists is not to take all that has come before us as given and hope

that it supports us as we venture into speculation. Rather, it is to make use of our greatest

privilege —hindsight —to reinterpret past formalisms in ways that allow for new theories

to come directly to us. The giants whose shoulders we stand on could only see so high; they

could not construct their theories with the explicit purpose of supporting those yet to come.

If we want to build another floor atop an existing building, we cannot simply start construc-

tion on the roof. We must first reassess the infrastructure of the entire building through the

lens of our evolving needs —tearing parts down, reinforcing others, and laying new support

beams —before we can even think about building upward. If the preparation is done cor-

rectly, though, we may find ourselves not just able to build another floor, but many more,

reaching as high as we are able to see.

This is the philosophy behind this thesis. Nothing groundbreaking will be presented in iso-

lation, but rather I hope that my deliberate choices to collect this information, new and old

alike, into a single document unified under a single modern viewpoint will be groundbreak-

ing in its own right. My intention is not for this thesis to be a testament to or celebration

of the things I have done, but rather a preparation for and a statement of what I intend to

do.

We begin in Chapter 2 by reformulating the framework of classical statistical mechanics from

an information-theoretic point of view according to the school of thought popularized by

E.T Jaynes in the 50’s [13]. We will then visit the 2d classical Ising model with a particular

focus on its symmetries, like Kramers-Wannier duality, and the transfer matrix formalism.

From the transfer matrix formalism, we rigorously derive the connection between the 2d

classical Ising model and the 1d quantum Ising model in a transverse field by taking an

extreme anisotropic limit as the vertical lattice spacing goes to zero and identifying the

vertical lattice direction with Wick rotated time.

In Chapter 3, we study the nuances of the 1d quantum Ising model in great detail. We begin

by studying the implications of the global Z2 symmetry of the model and its spontaneous

breaking, from which we observe how this symmetry can be reconstructed from topological

defects living on the links of the chain. From here, we see how Kramers-Wannier duality of

the 1d quantum Ising model can be obtained directly from gauging the global Z2 symme-
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try through a process in which we sum over all ways of inserting defects on the links and

then impose a Gauss law on each site. Next, we introduce the Jordan-Wigner and Bogoli-

ubov Transformations which allow us to map the Ising chain to a model of non-interacting

fermions. As in the previous chapter, we take a continuum limit —this time at the critical

point —to obtain the free Majorana fermion conformal field theory. We close by briefly

touching on the connections of rational conformal field theories with topological defects and

fusion categories without diving too far into the formalism.

We conclude in Chapter 4 by motivating and introducing the formalism of category theory

as a necessity to understand topological defects in generality. We first define categories

and basic notions like functors, being careful to avoid abstract machinery like the Yoneda

Lemma, while keeping our eye toward physically motivated constructions. Next, we define

an additive structure on categories, culminating in the definition of a 2-vector space. We

then define a monoidal product and an intuitive graphical calculus, on top of which we will

define a pivotal structure and finally give the definition of a fusion category. After exploring

some of the rich structures that fusion categories carry, we conclude by seeing fusion rules

in action through an exploration of topological defects in the 2d classical Ising model.



Chapter 2

The 2D Classical Ising Model

While the majority of this thesis is dedicated to presenting the categorical and topological

structures that arise from studying lattice models, it is vital that we build up a common

language from the ground up to show how the importance of these structures follows logically

from studying even the simplest physical models. As such, we will begin by rigorously

defining and solving the simplest classical lattice model from which nearly all modern tools

used by theoretical physics can be derived from. Beyond the fact that the methods and

symmetries utilized in analyzing the classical Ising model are important to understanding

more complex theories, we will show that this model naturally gives rise to mathematically

sophisticated notions like topological defects, gauge theory, conformal field theory, and more.

2.1 Crash Course in Classical Statistical Mechanics

Statistical mechanics is the branch of physics concerned with describing how macroscopic

phenomena—like pressure and temperature—emerge from systems of unfathomably many

interacting degrees of freedom. It is often a favorite of mathematicians, as it is not a

“branch of physics” in the usual sense. Rather than beginning with observed laws of nature

and seeking a general framework to explain them, statistical physics provides a powerful

toolbox that can be applied to virtually any large, complex system—physical or otherwise.

道生一，一生二，二生三，三生万物。

The above quote is taken from the Tao Te Ching, and roughly translates to: ’The Tao

gives birth to one, one gives birth to two, two gives birth to three, and three gives birth to

ten thousand things.’ One possible interpretation is that from the unknowable (the Tao)

arises the concept of individual entities. From the existence of one comes the potential for

interaction; from a few, a system; and from the system, the emergence of collective behavior

greater than the sum of its parts. This is the motivating philosophy behind statistical

mechanics—well captured by the modern phrase: “More is different.” A single molecule

of air cannot have pressure, yet no one would deny that air pressure is crucial to our

macroscopic world. Many fundamental physical concepts are, in fact, emergent.

5
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Statistical mechanics distinguishes between microstates and macrostates. A microstate

specifies all the relevant data (e.g., position and momentum) of each individual particle in

a system. Since such systems typically involve on the order of 1023 particles, knowledge of

the exact microstate is essentially impossible. A macrostate, on the other hand, encodes

the configuration of the entire system in terms of coarse-grained, measurable quantities like

temperature, pressure, or magnetization.

Rather than relying on physical axioms to relate microstates and macrostates, we can instead

frame this as an information-theoretic problem [14]. Given what the macroscopic informa-

tion we can directly observe from a system, what can we infer about the distribution of

microstates? The best we can hope for is a probability distribution over all microstates that

(1) matches the observed macroscopic data in expectation, and (2) minimizes uncertainty.

This naturally leads to the principle of maximum entropy.

Definition 2.1.1: Classical Statistical Mechanical System

A classical statistical mechanical system is a triple (X,µ,H), where X is a set

of microstates, µ is a measure on X, and H : X → R≥0 is a real-valued function

called the Hamiltonian. For a microstate x ∈ X, the value H(x) is interpreted as

its energy.

We assume that X follows a probability distribution p : X → R≥0 such that∫
X

p(x) dµ(x) = 1 (2.1)

In classical information theory, the information gained from observing x is − log p(x), called

the self-information of x.

Definition 2.1.2: Gibbs Entropy

Given a system (X,µ,H) with probability distribution p, the Gibbs entropy is

defined as:

σ := −k
∫
X

p(x) log p(x) dµ(x) (2.2)

where k ≈ 1.38× 10−23 J/K is Boltzmann’s constant.

The Gibbs entropy simply tells us the expected amount of self-information contained in a

microstate. Typically, statistical mechanics refers to entropy as the ”disorder of a system,”

but in this context, a better explanation is that entropy is a measure of our ignorance

of which microstate actually describes our system. It is clear then that the most logical

choices, or at the least the safest choices for the probability distribution of X are those which

maximize the Gibbs entropy. This is known as the principle of maximum entropy.

Suppose we know that the measured value of the macroscopic energy of the system is

E ∈ R≥0. Given what we know, the best possible probability distribution p(x) is the one
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which maximizes the Gibbs Entropy subject to the constraint

⟨H⟩ :=
∫
X

H(x)p(x)dµ(x) = E (2.3)

We can find a solution to this optimization problem by introducing a Lagrange Multiplier

β, from which we find the solution

p(x) =
exp (−βH(x))

Z(β)
, where Z(β) =

∫
X

exp (−βH(x))dµ(x) (2.4)

Definition 2.1.3: The Boltzmann Distribution

We say that a statistical mechanical system (X,µ,H) with probability distribution

p is in Thermal Equillibrium if p maximizes the Gibbs Entropy subject to a

given energy constraint. In other words, if the microstates follow the probability

distribution:

p(x) =
exp (−βH(x))

Z(β)
(2.5)

which is known as The Boltzmann Distribution. We refer to Z(β) as the Par-

tition Function of the system.

We often write β = 1
kT , where T is the temperature of the system, where k appears in the

expression to ensure that βH(x) is dimensionless. The motivation for writing β in terms of

temperature is that as T → ∞ (that is, β → 0), all microstates become equally probable,

which matches our physical environment.

Although it appears simply as a normalization factor, the partition function Z(β) is deeply

fundamental: nearly all macroscopic observables can be derived from it.

Fact 2.1.4

For a system in thermal equilibrium, the expected energy is given by:

E = ⟨H⟩ = − d

dβ
logZ(β). (2.6)

Proof. By direct calculation:

− d

dβ
logZ(β) = − 1

Z(β)

d

dβ
Z(β)

=
1

Z(β)

∫
X

H(x) exp(−βH(x)) dµ(x)

=

∫
X

H(x)p(x) dµ(x)

= ⟨H⟩ (2.7)
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Fact 2.1.5

The Gibbs entropy is related to the partition function via:

σ = k

(
logZ(β)− β d

dβ
logZ(β)

)
. (2.8)

Proof. Using the definition of p(x), we find:

σ = −k
∫
X

p(x) log p(x) dµ

= −k
∫
X

p(x) log

(
exp(−βH(x))

Z(β)

)
dµ. (2.9)

This becomes:

σ = k

(
β

∫
X

H(x)p(x) dµ+ logZ(β)

)
= k(βE + logZ(β)). (2.10)

Substituting the expression for E gives the desired result.

Definition 2.1.6: Free Energy

The free energy of a system is defined as the quantity:

F := E − Tσ = −kT logZ(β). (2.11)

Observe that Tσ has units of energy and reflects the uncertainty of the system due to entropy.

So the free energy F = E − Tσ subtracts the “inaccessible” portion of the total energy. We

interpret F as the energy that is actually available for doing work. Moreover, thermal

equilibrium is equivalent to the minimization of free energy, reinforcing this interpretation.

Since F = −kT logZ, the partition function Z(β) effectively counts the number of ac-

cessible microstates at a given temperature. And because Z =
∫
X
exp(−βH(x)) dµ, we

interpret exp(−βH(x)) as a measure of how accessible a given microstate is. This matches

our physical intuition: at high temperatures, more states become accessible.

With this, we have built a logically coherent and mathematically precise foundation for

classical statistical mechanics. We now turn to one of the simplest and most instructive

models in this framework: the classical Ising model.

2.2 Introducing The Classical Ising Model

Consider a finite 2d square lattice with N sites, where each site i is labelled by a discrete

variable σi ∈ {−1, 1}. We refer to each σi as a spin and a particular assignment of +1’s

and −1’s to each site as a spin configuration, [σ]. Visualizing +1’s as upward pointing
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arrows and −1’s as downward pointing arrows, a particular lattice configuration can be seen

in Figure 1.

Figure 2.1: A particular configuration of the 2D Classical Ising Model [15]

We would then like to define a Hamiltonian on our set of configurations. For every pair of

neighboring sites ⟨ij⟩, we define an interaction term given by −Jσiσj , where J ∈ R is a

coupling constant which we will later tune to obtain different behaviors of our system. Then,

for every individual site i, there will be a contribution to the energy given by −hσi, where
h ∈ R is a coupling constant which is interpreted as the strength of an external transverse

magnetic field. The Hamiltonian is then simply the sum over all of these contributions.

Definition 2.2.1: Ising Model

The 2D classical Ising Model in a magnetic field of strength h is a classical sta-

tistical mechanical system whose microstates are spin configurations [σ] and whose

Hamiltonian is given by:

H([σ], h) = −J
∑
⟨ij⟩

σiσj − h
∑
i

σi

We specify that the Hamiltonian is a function of h to emphasize that the magnetic field

strength is something we control in order to probe the physics of the model in its natural

state. Thus, the quantities we really care about will be those which are taken in the limit

as h→ 0. Accordingly, we will denote the partition function function at zero magnetic field

as simply: Z(β) := Z(β, h = 0). Equipped with our Hamiltonian, the partition function for

the 2d classical Ising model is:

Z(β, h) =
∑
[σ]

exp (−βH([σ], h)) (2.12)

where we are summing over all possible spin configurations [σ]. The free energy per site of
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the theory is then given by:

f(β, h) = −kT
N

logZ(β, h) (2.13)

. From here, we can in principle compute any macroscopic quantity we could possibly need

to understand the large scale behavior of the Ising Model. Perhaps most importantly is

the Magnetization, M = ⟨σj⟩, where the expectation value ⟨σj⟩ is computed using the

Boltzmann Distribution at zero magnetic field (h = 0). The translation invariance of this

theory tells us that this value will be the same no matter which site j we choose, allowing

us to refer to any one of these expectation values unambiguously as M .

Fact 2.2.2

The magnetization can be found from the free energy per site via: M =

lim
h→0
−∂f(β,h)

∂h

Proof. Recalling the definition of the Boltzmann Distribution, observe that M = ⟨σj⟩.
Then, since we are summing over all possible configurations, the expected value of one spin

is the same as the expected value of the average of all N spins; i.e

M =

〈
1

N

∑
i

σi

〉

=
1

NZ(β)

∑
[σ]

∑
k

σk exp

Jβ∑
⟨ij⟩

σiσj


= lim
h→0

1

NZ(β, h)

∑
[σ]

1

β

∂

∂h
exp

Jβ∑
⟨ij⟩

σiσj + hβ
∑
k

σk


= lim
h→0

kT

N

1

Z(β, h)

∂Z(β, h)

∂h

=
kT

N

∂

∂h
logZ(β, h)

= −∂f(β, h)
∂h

(2.14)

Another fundamental quantity that we care about is the connected correlation of two spins

σi and σj : ⟨σiσj⟩c = ⟨σiσj⟩− ⟨σi⟩⟨σj⟩. This quantity roughly tells us the mutual statistical

dependence of the two spins. Since the Ising model is translation invariance, this dependence

should not depend on the specific sites i and j, but rather just the distance between the

sites |i− j|. We will see how the correlation depends on distance in a future section.

2.3 Kramers-Wannier Duality

Consider the 2d Classical Ising Model in zero magnetic field (h = 0). It is obvious that this

theory has a global Z2 symmetry given by flipping all of the spins; i.e the Hamiltonian is
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invariant under σi 7→ −σi ∀ i, as:

H([σ]) =
∑
⟨ij⟩

σiσj 7→ H([−σ]) =
∑
⟨ij⟩

(−σi)(−σj) = H([σ]) (2.15)

However, this is not the only symmetry of this model; there is in fact a very non-obvious

duality in this theory, discovered by Kramers and Wannier in 1941 [16], relating the 2d

Ising model at one temperature to another 2d Ising model at a different temperature. While

discovered over 80 years ago, Kramers-Wannier duality has had a resurgence of interest in

the last few years as people have realized that it is a part of a broader phenomenon known

as non-invertible symmetries. We will discuss the modern perspective of such symmetries

in later chapters, but it is important for us to first understand the historical context of

Kramers and Wannier’s observation.

Observe that the partition function for the 2d Ising Model in zero magnetic field can be

written as:

Z(K) =
∑
[σ]

exp (K
∑
⟨ij⟩

σiσj)

=
∑
[σ]

∏
⟨ij⟩

exp(Kσiσj)

=
∑
[σ]

∏
⟨ij⟩

1∑
k=0

Ck(K)(σiσj)
k (2.16)

whereK := Jβ, C0(K) = cosh(K), and C1(K) = sinh(K). In doing this, we have essentially

introduced a new dynamical variable, k = 0, 1 on every link; we make this more explicit by

writing the variable as kl for each link l. After some algebraic manipulations of regrouping

the spins and exchanging sums and products, we can write the partition function as:

Z(K) =
∑
[σ]

∑
[k]

∏
l

Ckl(K)
∏
i

σ
∑

j k⟨ij⟩
i (2.17)

where performing a sum over [k] denotes summing over all possible assignments of 0’s and

1’s to each of the kl’s, and
∑
j k⟨ij⟩ denotes summing over all kl where l is a link anchored

at a site i. Now, with all of the σi in a single term, we can perform the sum over [σ] to

obtain:

Z(K) =
∑
[k]

∏
l

Ckl(K)
∏
i

2δ(
∑
j

k⟨ij⟩ mod 2) (2.18)

where δ(x) = 1 if x = 0 and δ(x) = 0 otherwise. When the partition function is written this

way, it is clear that a large portion of the terms in the sum over [k] will have vanishing con-

tributions. In fact, only those configurations in which every vertex has an even number

of edges l incident to it with kl = 1 will have a non-zero contribution.

If we visualize the links as being filled in with green if kl = +1 and empty if kl = 0, as in

Figure 2.2, then enforcing that only configurations with an even number of +1 links attached

to each vertex amounts to summing over configurations in which the links with +1 links

only form closed loops! This notion is deeply related to gauge theory as we will see in the
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next chapter; in fact, summing over configurations in which the kl variables sum to an even

number at each vertex is mathematically equivalent to summing over flat connections of Z2

gauge fields.

Figure 2.2: Configurations of link variables that contribute to the partition function

Because of this, we want to look for a new way of phrasing the kl variables that remove this

redundancy from the partition function. Kramers and Wannier found that the right way

of doing so is to start by defining the dual lattice, whose vertices are the centers of the

plaquettes (faces) of the original lattice, as seen in Figure 2.3.

Figure 2.3: The original lattice (in red) along with its dual lattice (in blue).

On each vertex v of the dual lattice, we define new variables sv ∈ {−1, 1}, denoting a

particular assignment of values to these variables as [v]. Observe that every link l can be

specified by two vertices on the dual lattice; namely, the centers of the two plaquettes that

l is the interface between.

Claim: A New Expression for the Link Variables

The configurations [k] which have non-vanishing contributions to the partition func-

tion are exactly those in which every kl can be written as kl =
1
2 (1− svsw), where v

and w are the two vertices of the dual lattice which specify l.
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Proof. Suppose that kl =
1
2 (1 − svsw) for every link l, as described above. Consider an

arbitrary vertex of the original lattice i with edges labeled as in Figure 2.4. We want to

show that k(12)+k(23)+k(34)+k(41) = 2− 1
2 (s1s2+s2s3+s3s4+s4s1) is even for all possible

configurations [s] and that appropriate values of s1, s2, s3, and s4 can be chosen to make

the sum equal to 0, 2, and 4. Thus, let us check all possible cases for this vertex.

1. s1 = s2 = s3 = s4 = +1: If only one edge is labeled −1, we have k(12)+k(23)+k(34)+
k(41) = 2− 1

2 (1 + 1 + 1 + 1) = 0

2. s1 = −1, s2 = s3 = s4 = +1: In this case
∑
kl = 2− 1

2 (−1 + 1 + 1− 1) = 2

3. s1 = s2 = −1, s3 = s4 = +1: If exactly two adjacent edges are labeled −1, we have∑
kl = 2− 1

2 (1− 1 + 1− 1) = 2

4. s1 = s3 = −1, s2 = s4 = +1: If exactly two opposite edges are labeled with −1, we
have

∑
kl = 2− 1

2 (−1− 1− 1− 1) = 4

5. s1 = s2 = s3 = −1, s4 = +1: If exactly three edges are labeled −1, we have
∑
kl =

2− 1
2 (+1 + 1− 1− 1) = 2

6. s1 = s2 = s3 = s4 = −1: Here, we have
∑
kl = 2− 1

2 (1 + 1 + 1 + 1) = 0

Figure 2.4: Arbitrary vertex i with four surrounded plaquettes labeled 1, 2, 3, 4.

Thus, every possible configuration [s] ensures that the sum of all link variables kl incident

at each vertex is even. Also, a configuration can always be chosen to make this sum any

desired even number from 0 to 4, which proves our claim.

Now, some quick combinatorics tells us that there are exactly 2 configurations of s1, · · · , s4
that give a sum of 0, 12 configurations that give a sum of 2, and 2 configurations that gives

a sum of 4 at a given vertex. On the other hand, there is 1 configuration of k1, · · · , k4 that

gives a sum of zero at a vertex,
(
4
2

)
= 6 configurations of k1, · · · , k4 that give a sum of 2,

and 1 configuration of k1, · · · , k4 that gives a sum of 4. Thus, if we replace kl with our

new expression in our partition function, we must include an extra factor of 1
2 in order to

account for the double counting if we sum over all configurations of [s] on the dual lattice.
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Now, performing the product over all sites i on the original lattice with our new definition

of kl that has no vanishing contributions to the partition function, we have:

Z(K) =
1

2
2N
∑
[s]

∏
(vw)

C 1
2 (1−svsw)(K) = 2N−1

∑
[s]

∏
(vw)

Ck(vw)
(K) (2.19)

where (vw) refers to the link specified by the vertices v and w on the dual lattice. Lastly,

notice that since k(vw) = 0, 1, we can write:

Ck(vw)
(K) = cosh(K)

(
1 + k(vw)(tanh(K)− 1)

)
= cosh(K) exp

(
k(vw) log(tanh(K))

)
= cosh(K) (tanh(K))1/2 exp

(
− 1

2 log(tanh(K)) svsw
)

=
√
cosh(K) sinh(K) exp

(
− 1

2 log(tanh(K)) svsw
)

(2.20)

Thus, the partition function simplifies as:

Z(K) = 2N−1
∑
[s]

∏
(vw)

√
cosh(K) sinh(K) exp (−1

2
log (tanh(K))svsw)

=
1

2
(sinh(2K))N

∑
[s]

exp

−1

2
log (tanh (K))

∑
(vw)

svsw

 (2.21)

where the last equality follows from the fact that there are 2N edges (v, w) on our lattice

with N vertices, as well as the identity sinh(2β) = 2 sinh(β) cosh(β). But observe that the

RHS is directly proportional to the partition function of another 2d Ising Model just at a

different temperature! This is the amazing discovery that Kramers and Wannier realized in

1941; we can sum it up in one equation

Z Ising(K) =
1

2
(sinh(2β))NZIsing(K̃) (2.22)

where

K̃ = −1

2
log (tanh (K)) (2.23)

is referred to as the dual coupling. We have plotted the dual coupling as a function of

the original coupling below in 2.5. From this, we can see that Kramers-Wannier duality

is a mapping from a weakly coupled Ising Model to a strongly coupled Ising Model. Even

better perhaps, thinking of the coupling J as fixed, we can instead think of this mapping

as a self-duality between a given Ising model at a high temperature with itself at a low

temperature.

Despite coming from seemingly unmotivated algebraic manipulations, this self-duality is

an incredibly powerful and fundamental symmetry. It is typically much easier for us to

understand the behavior of statistical or field theoretic models in the weakly coupled regime,

in which we can Taylor expand the partition function. However, equipped with this duality,

we can actually map the weak coupling expansion into the strongly coupled regime to

understand the low temperature behavior perturbatively as well.
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Figure 2.5: Dual coupling plotted against original coupling

Even this does not even capture the sheer strength and beauty of this duality. In fact,

even if we considered our model to have a different coupling K⟨ij⟩ for every pair of spins

on the lattice. This follows from the fact that the coupling J only manifests in Eq. 2.19

through the variable Ck(vw)
(K) which is defined on links. Then, since the entire argument

leading up to the dual partition function in Eq. 2.29 only depends on the local values of the

variables on the links, we find each value of the coupling gets mapped to a dual coupling

under Kramers-Wannier duality via:

K̃⟨ij⟩ = −
1

2
log tanhK⟨ij⟩ (2.24)

This is an almost miraculously elegant aspect of the 2d Ising model that is often taken for

granted.

Back to the case of uniform coupling, we can see that Kramers-Wannier Duality puts the

following constraint on the free energy per site of the 2d Ising Model:

f(K) = log(sinh(2K)) + f(K̃) (2.25)

This means that up to the addition of smooth analytic function of K, the expression for

the free energy is invariant under Kramers-Wannier duality. Hence, if there is a single value

Kc of the coupling at which the free energy or any of its derivatives have singularities –

indicating a phase transition – it must occur at the self-dual point when Kc = K̃c. From

Eq. 2.23, it is easily found that the critical value for the coupling is:

Kc =
1

2
log
(
1 +
√
2
)

(2.26)

While this relies on the assumption that there was indeed a single point in which the free

energy or one of its derivatives was singular, an exact solution of the 2d Ising model by

Onsager in 1941 later confirmed this assumption, showcasing the power of Kramers-Wannier
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duality. Later in this thesis, we will find a closed-form expression for the free energy of the

2d Ising model in the thermodynamic limit using a different method than Onsager. We will

revisit Kramers-Wannier duality twice more during this thesis, recasting it and the global

Z2 symmetry of the 2d Ising Model in the framework of topological defects, showing the

fundamental nature of these two symmetries and how they interact with one another.

2.4 Introducing the Transfer Matrix: A Path Integral

Suitable for Mathematicians

In their original paper, Kramers and Wannier also found a convenient way of expressing the

partition function Z(β) simply as the trace of a suitable 2n×2n matrix (for an m×n square

lattice), known as the transfer matrix. Unbeknownst to the physicists of the 40’s, it turns

out that the transfer matrix formalism is crucial to understanding how classical statistical

models can be related to quantum field theories.

At this point we will begin referring to sites on the lattice by the coordinates (i, j), and

their associated spin by σi,j . For convenience, we denote a configuration of a given row k as

σ(k) := {σ1,k , · · · , σn,k}. We will also impose periodic boundary conditions σij = σi+n,j and

σij = σi,j+m, effectively putting our model on a torus. Then, a given row has the following

contribution to the energy of a given configuration:

E[σ(k)] = −J
n∑
i=1

σikσi+1,k (2.27)

Furthermore, there is a contribution to the energy given by the interaction between two

neighboring rows:

E[σ(k), σ(k+1)] = −J
n∑
i=1

σikσi,k+1 (2.28)

Now, for a given row k, we define a formal 2n dimensional vector space Vk with an or-

thonormal basis given by the collection of all row configurations: {|σ(k)⟩}[σ], where we will

henceforth be using bra-ket notation. As the rows are uniform in length, each of these vector

spaces are the same and we will refer to each vector space unambiguously as V .

Then, we define the so-called transfer matrix, T , which takes in two neighboring row

configurations and spits out their joint contribution to the partition function. It is defined

by the following matrix elements:

⟨σ(k+1)|T |σ(k)⟩ = exp−β(E[σ(k), σ(k+1)] +
1

2
E[σ(k)] +

1

2
E[σ(k+1)]) (2.29)

This allows us to write the partition function as:

Z(β) =
∑

σ(1),··· ,σ(m)

⟨σ(1)|T |σ(2)⟩ ⟨σ(2)|T |σ(3)⟩ · · · ⟨σ(m)|T |σ(1)⟩ = Tr Tm (2.30)

Observe that T is by definition symmetric, so it is necessarily diagonalizable with a collection

of 2n (not necessarily distinct) eigenvalues λ0 ≥ · · · ≥ λ2n−1. Thus, we can express the
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partition function entirely in terms of a sum of eigenvalues:

Z(β) =

2n−1∑
i=0

λmi (2.31)

Claim: A Simple Expression for the Free Energy

The free energy per site is given in the thermodynamic limit (m,n→∞) as f(β) =

− k
β lim
n→∞

log λ0

n , where λ0 is the largest eigenvalue of T .

Proof. From the definition of free energy, it follows that:

f(β) = − lim
m,n→∞

k

β

1

mn
logZ(β) = − lim

m,n→∞

k

β

1

mn
log (

2n−1∑
i=1

λmi )

Now, by the Perron-Frobenius Theorem [17], since T has all strictly positive entries (as

they are all of the form exp (· · · )), it must have a unique maximal eigenvalue λ0. Then,

we can write the free energy as:

− lim
m,n→∞

k

β

1

mn
log (λm0 (1 +

2n−1∑
i=1

(
λi
λ0

)m
))

Then, since λ0 is strictly greater than every other eigenvalue of T , we have that: lim
m→∞

(
λi

λ0

)m
=

0 for all i > 1. Thus, our expression simplifies as:

− lim
m,n→∞

k

β

1

mn
log (λm0 )

From here, it immediately follows that:

f(β) = −k
β

lim
n→∞

log λ0
n

as desired.

As we can see, by employing the transfer matrix, much of the computations of observable

quantities in this model have been reduced to a matter of finding the eigenvalues of an

arbitrarily large matrix.

The transfer matrix approach’s value far exceeds that of a cheeky computational tool, how-

ever. It is in fact a mathematically rigorous, discrete version of the infamous path integral

from quantum field theory; we will see later in this chapter, in fact, that a certain limit of

the transfer matrix exactly reproduces the time evolution of a certain quantum mechanical

system. We interpret taking the trace over all row configurations of the transfer matrix as a

weighted sum over all possible ways that the transfer matrix evolves one row into the next.

We can actually use this interpretation of the transfer matrix as the evolution of the system in

the vertical direction to compute important physical quantities. Making use of the operator
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σ̂i which acts on row configurations and measures the spin of the i’th site via σ̂i |σ1 · · ·σn⟩ =
σi |σ1 · · ·σn⟩, we calculate the magnetization M as:

⟨σ11⟩ = lim
m→∞

(TrTm)
−1

Tr (σ̂ Tm)

= lim
m→∞

∑
l

(
λl
λ0

)m
⟨0|σ̂1|l⟩

= ⟨0|σ̂1|0⟩ (2.32)

where |l⟩ refers to a member of the orthonormal basis of eigenvectors of the transfer matrix

with eigenvalue λl, and λ0 is the unique largest eigenvalue of the transfer matrix T , which

dominates as m becomes large.

We can also consider the connected correlation function of two spins σ1,1 and σ1, 1+r sepa-

rated by a vertical distance r in the thermodynamic limit. The pair correlation function is

given by:

⟨σ11σ1+r,1⟩ = lim
m→∞

(TrTm)
−1

Tr
(
Tm−rσ̂1T

rσ̂1
)

= lim
m→∞

1

λm0

∑
l

⟨0|λm−r
0 σ̂1|l⟩⟨l|λrl σ̂1|0⟩

= ⟨σ11⟩2 + |⟨0|σ̂1|1⟩|2
(
λ1
λ0

)r
+ · · · (2.33)

where the remaining terms fall off as r increases. From this, along with our expression for

the magnetization in Eq. 2.32, we find that the connected correlation function for the two

spins separated by a vertical distance r is:

⟨σ11σ1+r,1⟩c = |⟨0|σ̂1|1⟩|2
(
λ1
λ0

)r
+ · · · (2.34)

Thus, for large r, the connected correlation function decays as

⟨s11s1+r,1⟩c ∼
(
λ1
λ0

)r
= e−r/ξ, with ξ :=

(
log

λ0
λ1

)−1

. (2.35)

The correlation length ξ is the natural length scale of the Ising model; it roughly tells us

how far changes in spins propgate throughout the system.

2.5 Crash Course in Quantum Statistical Mechanics

Before we delve into a few of the many reasons that over 800 papers on the Ising model

are published each year, we must briefly overview the foundations of quantum (statistical)

mechanics.

In the preceding sections, each microstate of our system was characterized by a single,

definite value. However, at smaller length scales, quantum effects take over and there is an

unavoidable indeterminacy introduced to our system in addition to the usual statistical

uncertainty. By this, I mean the following:
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1. States of the system no longer have a single value but are instead in a superposition

of possible states with a probability of being in any given one of them.

2. The system evolves over time in ways which conserve the total probability.

3. When measured, the state collapses from a superposition onto a definite state.

The most natural mathematical arena in which all of these physical observations can be

rigorously defined is a Hilbert Space.

Definition 2.5.1: Hilbert Space

A (finite dimensional) Hilbert Space is a vector space H over C with an inner product

⟨·|·⟩ : H ×H −→ H that obeys the following properties:

1. ⟨v|w⟩ = ⟨w|v⟩
2. ⟨v|aw1 + bw2⟩ = a⟨v|w1⟩+ b⟨v|w2⟩ ∀ a, b ∈ C
3. ⟨v|v⟩ ≥ 0, with the equality only holding when v = 0.

Similarly to the classical case, we then want to define a Hamiltonian on our Hilbert Space

of states. We define a Hamiltonian H : H −→ H to be a self-adjoint (Hermitian) operator

whose eigenvalues correspond to the energy of a given state. The motivation for this is as

follows: by Spectral Theorem, since H is self-adjoint, it must have an orthonormal basis

(ONB) of eigenvectors, {|ψi⟩}i, such that

H |ψi⟩ = Ei |ψi⟩ with Ei ∈ R (2.36)

We refer to these as the energy states of the system. Then, any vector |Ψ⟩ ∈ H can

be expressed in terms of this ONB of energy states as |Ψ⟩ =
∑
i

ai |ψi⟩ for some ai ∈ C.

Naturally, then, we have:

⟨Ψ|H |Ψ⟩ =
∑
i, j

aiaj ⟨ψi|H |ψj⟩

=
∑
i, j

aiaj ⟨ψi|Ej |ψj⟩

=
∑
i, j

aiajEjδij

=
∑
i

|ai|2Ei (2.37)

Assuming |Ψ⟩ is a unit vector, we have
∑
i

|ai|2 = 1, giving |ai|2 the interpretation of the

probability of the quantum state |Ψ⟩ being measured in the state |ψi⟩ with energy Ei. This

means that ⟨Ψ|H |Ψ⟩ can be interpreted as the expected value of the energy of the quantum

state |Ψ⟩.

Now, we expect states to evolve in such a way that the probabilities still sum to 1 at any

point in time, i.e the norm of the state vector remains unchanged. This implies that quantum
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states should evolve in time by being acted on by a unitary operator U(t) such that:

U(t) |Ψ(t0)⟩ = |Ψ(t+ t0)⟩ (2.38)

We should also have that U(t1)U(t2) = U(t1+t2) for all t ∈ R. Physically, we know that the

energy of the state should be conserved through time, meaning it should not matter whether

we measure the energy and then evolve the state or swap the order. Mathematically, this

should imply:

[H,U(t)] := H U(t)− U(t)H = 0 (2.39)

for all t ∈ R. With these properties in mind, the most natural expression for the time

evolution operator is:

U(t) = eiHt (2.40)

where the i is in the exponent to enforce unitarity, since we know that H is required to be

Hermitan by definition.

From here, we have all of the necessary ingredients to do quantum statistical mechanics.

We define the partition function of a quantum statistical mechanical system in analogy with

the classical case by summing over the energy eigenvalues:

Z(β) =
∑
i

e−βEi =
∑
i

⟨ψi| e−βH |ψi⟩ = Tr ρ (2.41)

where ρ := e−βH is referred to as the density operator and β is the inverse temperature.

Take note of the similarities between ρ and the time evolution operator U(t); specifically,

they are related by the transformation t 7→ iβ, which is known as a Wick rotation. Thus, we

think of the density operator ρ as giving the imaginary time (or Euclidean time) evolution

of a quantum statistical mechanical system as the temperature is varied.

2.6 From Classical to Quantum

Given the similarity between the expression of the partition function in terms of transfer

matrix (Eq. 2.30) for the 2d Ising model and the partition function for a quantum system

(Eq. 2.41), one might wonder whether we can find a quantum mechanical system whose

partition function is equivalent to the 2d classical Ising model’s. This is indeed true, but

there is some nuance required to reach this equivalence.

Consider a single row σ(k) of the 2d classical Ising model and its corresponding Hilbert space

of configurations V . Observe that we can express Vi as being built out of n 2-dimensional

Hilbert spaces – one for each site in the row. The Hilbert space of the site in the i’th column

will be referred to as C2
i and will be expressed in terms of the orthonormal basis vectors |−⟩

and |+⟩, such that the total Hilbert space is:

V =
⊗
i

C2
i (2.42)
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with the resulting basis vectors of the total space of row configurations being given by:

{|+⟩ |+⟩ · · · |+⟩ , |−⟩ |+⟩ · · · |+⟩ , · · · , |−⟩ |−⟩ · · · |−⟩} (2.43)

We choose the ONB {|−⟩ , |+⟩} on each site to be the eigenstates of the Pauli-Z matrix,

where we recall the Pauli Matrices:

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (2.44)

We want to express the transfer matrix T (Eq. 2.29) in a new way which makes its relation

with the quantum mechanical formulation of the partition function clear. First, we will split

the transfer matrix into two pieces – Tk, which depends only on the energy within a single

row, and Tk+ 1
2
, which depends on the interaction between two neighboring rows.

Consider the matrix Tk which acts on the Hilbert space of the k’th row by acting on a given

configuration with an eigenvalue corresponding to its energy. Denoting σzi = 1⊗ · · · ⊗ σz ⊗
· · · ⊗ 1 with the σz in the i’th position, we can cleverly write Tk as:

Tk = exp

(
K

n∑
i=1

σzi σ
z
i+1

)
(2.45)

Then, we can define another matrix Tk+ 1
2
which is applied after Tk and takes in a row

configuration σk on the right and a configuration of the neighboring row σk+1 on the left

to spit out the interaction energy between them as matrix elements:

Tk+ 1
2
=

(
eK e−K

e−K eK

)
⊗ · · · ⊗

(
eK e−K

e−K eK

)
(2.46)

Figure 2.6: Visualization of the Transfer Matrix Between Rows k and k + 1

It would be nice now if we could write the above expression for Tk+ 1
2
as the exponential of

a sum of local Hermitian operators, like we did for Tk in Eq. 2.46. Observe that:

eK
′σx

=

(
1 0

0 1

)
+

(
0 K ′

K ′ 0

)
+

(
K′2

2 0

0 K′2

2

)
+

(
0 K′3

6
K′3

6 0

)
+ · · ·

=

(
1 + K′2

2 + · · · K ′ + K′3

6 + · · ·
K ′ + K′3

6 + · · · 1 + K′2

2 + · · ·

)

=

(
coshK ′ sinhK ′

sinhK ′ coshK ′

)
(2.47)

Noticing that Eq. 2.47 looks similar to one of the tensor factors in Eq. 2.46, we may wonder
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whether there exists K ′ such that:(
coshK ′ sinhK ′

sinhK ′ coshK ′

)
∝

(
eK e−K

e−K eK

)
(2.48)

Dividing the two independent constraints, we see that such a K ′ would satisfy: tanhK ′ =

e−2K , or − 1
2 log tanhK

′ = K. This should remind you of the expression of the dual coupling

from Kramers Wannier duality (Eq. 2.22), as we in fact have that K = K̃ ′! This makes

sense considering our interpretation in Figure 2.6 of Tk+ 1
2
acting on the dual lattice between

two interacting rows. Ultimately, after some algebra, we find the proportionality constant

and obtain: (
eK e−K

e−K eK

)
=
√

2 sinh 2K̃ ′ exp (K ′σx) (2.49)

Plugging this in for each factor in Eq. 2.46, we obtain:

Tk+ 1
2
= (2 sinh 2K̃ ′)

n
2 exp

(
K ′

n∑
i=1

σxi

)
(2.50)

where σxi = 1 ⊗ · · · ⊗ σx ⊗ · · · ⊗ 1 with σx in the i’th position. From here, we finally can

express the transfer matrix as1:

T = Tk+ 1
2
Tk = (2 sinh 2K̃ ′)

n
2 exp

(
K ′

n∑
i=1

σxi

)
exp

(
K̃ ′

n∑
i=1

σzi σ
z
i+1

)
(2.51)

Then, by the same logic as we used a couple of sections ago, the partition function will

be given by the trace of Tm as in Eq. 2.30. However, since the partition function is only

defined up to an overall constant, we can safely drop the factor of (2 sinh 2K̃ ′)
n
2 from each

transfer matrix to obtain a nicer expression for Z:

Z(K ′) = Tr

(
exp (K ′

n∑
i=1

σxi ) exp (K̃
′
n∑
i=1

σzi σ
z
i+1)

)m
(2.52)

From here, we would like to use the additive property of the exponential function and

write the partition function as the trace of the exponential of a single Hamiltonian, but

unfortunately because σx and σz do not commute, this is not so simple. Indeed, writing

A :=
∑n
i=1 σ

x
i and B :=

∑n
i=1 σ

z
i σ

z
i+1, we can expand out the exponentials to see where our

procedure breaks down:

exp (K ′A) exp (K̃ ′B) = (1 +K ′A+ · · · )
(
1 + K̃ ′B + · · ·

)
= (1 +K ′A+ K̃ ′B +

K ′K̃ ′

2
(AB +BA) + · · · ) + (

K ′K̃ ′

2
[A,B] + · · · ) (2.53)

Thus, our partition function can be expressed as:

Z(K ′) =
(
exp (K ′A+ K̃ ′B) +O(K ′K̃ ′ [A,B])

)m
(2.54)

1Note that this is not exactly equal to Eq. 2.29, but it will ultimately lead to an equivalent partition
function.
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It is reasonable to assume that if K ′, K̃ ′ ≪ 1 in some limit, then the terms with the

commutator terms will vanish. However, by Kramers-Wannier duality, if we try to send

K ′ to 0, then K̃ ′ will be sent to ∞, which makes this even trickier. Let’s speculate for a

moment about why we have reached this impasse.

Recall in the last section that that the density operator ρ = e−βH is in fact just a Wick

rotated time evolution operator. Meanwhile, the transfer matrix T – which we are trying to

equate with a density operator – can be thought of as providing the evolution of the Ising

model from one row to the next. Thus, the issue likely lies in the fact that we are trying to

equate a discrete evolution operator, T , to a continuous time evolution operator, ρ. We may

expect that if we can find a way of implementing a suitable limit that makes the spacing

between rows go to 0, then we can equate the vertical axis of the 2d classical model with

the Euclidean time in a 1d quantum model and reach some kind of equivalence between T

and ρ.

Since we are going to compress the lattice in the vertical direction so that we no longer have

a square lattice, let us assume that the coupling between rows and columns is no longer

equal. For instance, let’s make the replacement K 7→ Kx for the coupling in Tk (Eq. 2.46)

and replace K 7→ Kt in Tk+ 1
2
(Eq. 2.47). With these replacements, our transfer matrix

becomes:

T = exp (K ′
t

n∑
i=1

σxi ) exp (Kx

n∑
i=1

σzi σ
z
i+1) (2.55)

where K ′
t satisfies tanhK ′

t = e−2Kt as before. Physically, we expect that as the rows get

closer together we should have Kt ≫ Kx, i.e the vertical coupling becomes stronger by

comparison. Thus, if we take the limit as the spacing between rows becomes infinitesi-

mally small, we should have Kt → ∞ as the number of rows, m, also increases to ∞ in a

corresponding way.

From the expression above, observe that K ′
t → 0 as e−2Kt . To maintain some sense of

isotropy, we also want Kx → 0 correspondingly, so we assume that

Kx = λe−2Kt (2.56)

where λ ∈ R is a coupling constant. We interpret e−2Kt as the lattice spacing, which shrinks

as we send Kt → ∞. When we take the continuum limit, we want to ensure that as we

increase the number of rows m to infinity and shrink the lattice spacing to 0, the overall

vertical size of the system remains constant. In other words, we should have:

m · e−2Kt = β (2.57)

where β is a fixed constant. Following this logic, we have:

lim
Kt→∞

T = exp

(
β

m

n∑
i=1

σxi

)
exp

(
βλ

m

n∑
i=1

σzi σ
z
i+1

)
(2.58)



CHAPTER 2. THE 2D CLASSICAL ISING MODEL 24

Then, using the Trotter Identity,

lim
n→∞

(
eA/neB/n

)n
= eA+B (2.59)

we have that:

Z = lim
m→∞

Tr

(
exp

(
β

m

n∑
i=1

σxi

)
exp

(
βλ

m

n∑
i=1

σzi σ
z
i+1

))m

= Tr expβ

(
n∑
i=1

σxi + λ

n∑
i=1

σzi σ
z
i+1

)
(2.60)

Thus, in the Euclidean time-continuum limit, we have an equivalence between the partition

function of the classical 2d Ising model in the transfer matrix formalism and the partition

function of a 1d quantum mechanical model. Specifically, we have

Z = lim
m→∞

Tr Tm = Tr ρ (2.61)

where ρ = e−βH is the density operator with (quantum) inverse temperature β corresponding

to the Hamiltonian:

H = −
n∑
i=1

σxi − λ
n∑
i=1

σzi σ
z
i+1 (2.62)

Traditionally, the coupling λ is absorbed into β and a new coupling h := 1
λ is introduced so

that we have:

H = −
n∑
i=1

σzi σ
z
i+1 − h

n∑
i=1

σxi (2.63)

as our Hamiltonian. Either way, we refer to the corresponding 1d quantum mechanical

system as the 1d transverse field Ising model (1d TFI) as the coupling term h plays

the role of a variable magnetic field that we saw in previous sections.

It’s important to note that this procedure is not specific to the 2d Ising model. In fact, a (d+

1) dimensional classical statistical mechanical model will be equivalent to a corresponding

d dimensional quantum mechanical model in the Euclidean time-continuum limit, so long

as the partition function obeys a property known as Reflection Positivity [18].



Chapter 3

The 1d Transverse Field Ising

Model

In the last chapter, we found that we can express the partition function of the 2d classical

Ising model as the trace over repeated applications of the transfer matrix. We further

posited that the transfer matrix, which acts on the Hilbert space of row configurations

H =

n⊗
i=1

C2
i (3.1)

has a natural interpretation as an evolution operator which takes one row configuration (a

basis vector in H) to the one above it. Thinking of the vertical axis of the 2d Ising model as

a discrete notion of time, we drew an analogy between the classical transfer matrix and the

quantum time evolution operator in quantum mechanics. Finally, we were able to solidify

these analogies by taking a suitable anisotropic limit as the spacing between adjacent rows

goes to 0 – the so-called Euclidean time continuum limit.

Specifically, we found the equivalence:

Z = Tr Tm
∼−−−−→

m→∞
Tr e−βH (3.2)

where H is the Hamiltonian

H = −
n∑
i=1

σzi σ
z
i+1 − λ

n∑
i=1

σxi (3.3)

which acts on a 1d chain of spins, whose possible quantum states are given by the Hilbert

space H. This classical-quantum correspondence is incredibly powerful, as the effective

inverse temperature β is proportional to the vertical size of the 2d Ising model (recall Eq.

2.57). This means that taking the thermodynamic limit as the size of the classical model

becomes infinite involves sending β → ∞ (i.e sending the effective temperature of the

quantum system to 0). Using this, we can actually find an exact closed-form expression for

the partition function in the thermodynamic limit. Indeed, if Ei are the eigenvalues of the

25
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Hamiltonian and gi are the degeneracies of these eigenvalues, we have:

lim
β→∞

Tr e−βH = lim
β→∞

∞∑
i=0

gie
−βEi

= lim
β→∞

e−βE0

(
g0 +

∑
i

gie
β(E0−Ei)

)
= g0 lim

β→∞
e−βE0 (3.4)

where E0 is the smallest eigenvalue of H, which we call the ground state energy.

This spectral interpretation also reveals the origin of the correlation length in the classical

model. Let us consider the connected correlation function of two spins separated by a

vertical distance r. From our previous discussion of the correlation function along with our

knowledge of the transfer matrix’s relation to the time evolution operator, we find:

⟨σiσi+r⟩c =
∑
n≥1

|⟨0|σzi |n⟩|2e−r(En−E0). (3.5)

For large separations r, the sum is dominated by the first excited state. Therefore, the

connected correlation decays exponentially:

⟨σiσi+r⟩c ∼ e−r/ξ, with ξ :=
1

E1 − E0
. (3.6)

From this observation, we can see that understanding the ground states of the 1d quan-

tum Hamiltonian is crucial to understanding the behavior of the 2d Ising model in the

thermodynamic limit.

3.1 Symmetries and their Breaking

Given that we obtained the 1d transverse-field Ising model directly from an extreme anisotropic

limit of the 2d classical Ising model, we may expect that the symmetries of the original model

– the global Z2 symmetry and Kramers-Wannier duality – manifest somehow in the quan-

tum case. This is indeed true, and these symmetries are in fact easier to see in this model.

As we constructed our Hamiltonian to be diagonalized in terms of the eigenstates of σz, the

global spin-flip operator will be given by:

S =

n∏
i=1

σxi (3.7)

Observe that S commutes with our Hamiltonian, as:

[S,H] = −
n∑
j=1

[

n∏
i=1

σxi , σ
z
jσ

z
j+1]− h

n∑
j=1�

�
�

�
��>

0

[

n∏
i=1

σxi , σ
x
j ]
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= −
n∑
j=1

n∏
i=1

σxi σ
z
jσ

z
j+1 +

n∑
j=1

σzjσ
z
j+1

n∏
i=1

σxi

= −
n∑
j=1

(−σzj
n∏
i=1

σxi )σ
z
j+1 ++

n∑
j=1

σzjσ
z
j+1

n∏
i=1

σxi

=

n∑
j=1

σzj (−σzj+1

n∏
i=1

σxi ) +

n∑
j=1

σzjσ
z
j+1

n∏
i=1

σxi

= 0 (3.8)

where we used the fact that σxi σ
z
j = −σzjσxi if i = j and σxi σ

z
j = σzjσ

x
i otherwise. We

interpret Eq.?? as saying that the energy of a system is the same before or after a global

spin flip is applied; hence, we say that S is a symmetry of the Hamiltonian.

Because S commutes with the Hamiltonian, they can be simultaneously diagonalized; i.e

there exists a basis of energy eigenstates that are also eigenstates of the symmetry operator.

However, this does not mean that any eigenstate of H will also be an eigenstate of S, as our

Hamiltonian can have degenerate eigenvalues. To see this, first consider our Hamiltonian in

the limit of very large magnetic field (h → ∞), in which case the σx terms dominate and

we have:

H ≈ −h
n∑
i=1

σxi (3.9)

In this limit, we have a single unique ground state:

|0⟩ = 1

2
n
2
(|+⟩+ |−⟩)⊗ · · · ⊗ (|+⟩+ |−⟩) (3.10)

with ground state energy given by:

H |0⟩ = −nh |0⟩ (3.11)

It is easy to see that in this limit, the ground state |0⟩ is indeed symmmetric under the

global Z2 symmetry, as:

S |0⟩ = 1

2
n
2
σx(|+⟩+ |−⟩)⊗ · · · ⊗ σx(|+⟩+ |−⟩) = |0⟩ (3.12)

Now, consider the limit of the Hamiltonian in which there is no magnetic field (h = 0); in

this case, we have:

H = −
n∑
i=1

σzi σ
z
i+1 (3.13)

Here, we see that in order for each term −σzi σzi+1 to contribute a −1 eigenvalue, each pair of

neighboring spins must be aligned. This means that we have two unique ground states:

|0⟩↑ = |+⟩ ⊗ · · · ⊗ |+⟩ |0⟩↓ = |−⟩ ⊗ · · · ⊗ |−⟩ (3.14)

While the equal superposition of the two ground states is indeed symmetric under the Z2
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action,

S

( |0⟩↑ + |0⟩↓√
2

)
=
|0⟩↑ + |0⟩↓√

2
(3.15)

upon measuring the ground state to be in either the up or down state, we find that the

symmetry is broken, as

S |0⟩↑ = |0⟩↓ S |0⟩↓ = |0⟩↑ (3.16)

This phenomenon in which choosing a specific ground state breaks a symmetry of its Hamil-

tonian is referred to as spontaneous symmetry breaking. In fact, it is through this

mechanism that the existence of the long-elusive Higgs boson was predicted!

Now, let us inspect the Hamiltonian for any possible remnants of Kramers-Wannier dual-

ity that are leftover from the classical case. Motivated by our finding from our original

derivations, we will try to phrase our Hamiltonian in terms of variables defined on the links

between the sites of our original 1d lattice. First, notice that each of the operators σzi σ
z
i+1

is specified by a single link connecting the sites i and i+1; we will quantify this by defining

the operator:

µxi+ 1
2
= σzi σ

z
i+1 (3.17)

which is simply the quantum analog of the kl variables that we defined on the links of the

classical model. µx
i+ 1

2

has eigenvalues of +1 and −1 depending on whether the spins at the

two ends of the link are aligned or not. With this in mind, we once again define a dual

lattice with n− 1 sites which can be seen below in Figure 3.1. Observe that acting with σxi

Figure 3.1: Lattice and Dual Lattice for 1d Quantum Ising Model

on our original lattice will disrupt both the measurements of µx
i− 1

2

and µx
i+ 1

2

, as:

{σxi , µxi± 1
2
} = {σxi , σzi σzi±1} = 0 (3.18)

since {σxi , σzi } = 0 and [σxi , σ
z
i±1] = 0 (where {A,B} = AB + BA is the anticommutator).

Using this property, we’d like to construct an operator which creates an excitation on a

single link – mapping µx
i+ 1

2

7→ −µx
i+ 1

2

for a given i while leaving the rest fixed. Since the

application of a single σxi disrupts the link on i + 1
2 and i − 1

2 , we can imagine trying to

undo one of these disruptions by applying σxi−1 but this will also flip i − 3
2 in the process,

unfortunately. However, we can imagine continuing this process – not forever, but just until

we hit the boundary. Since site i = 1 is only connected to a single link, σxi will just revert

the leftmost link to finally leave only the excitation on i+ 1
2 . We formalize this by defining

the operator:

µzi+ 1
2
=

i∏
j=1

σxj (3.19)

which acts with σxj on every site to the left of the link i+ 1
2 . The action of µz

i+ 1
2

is visualized

below in Figure 3.2.
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Figure 3.2: Action of µz
i+ 1

2

on the dual lattice

This operator is often referred to as a kink creation operator, as it is an extended operator

that creates an excitation on just a single link. Notice that our new operators obey

{µzi+ 1
2
, µxi+ 1

2
} = 0 (3.20)

while if i ̸= j, we have:

[µzi+ 1
2
, µxj+ 1

2
] = 0 (3.21)

Also, observe that:

µzi− 1
2
µzi+ 1

2
=
∏
j < i

∏
k < i+1

σxj σ
x
k

= σxi
∏
j < i

(σxj )
2

= σzi (3.22)

where we used the fact that (σx)2 = 1. Now, using Eq. 3.17 and Eq. 3.22, we can rewrite

our Hamiltonian in terms of our new dual variables:

H = −h
n−1∑
i=2

µzi− 1
2
µzi+ 1

2
−
n−1∑
i=2

µxi− 1
2
− h(σx1 + σxn)

= h

(
−
n−1∑
i=2

µzi− 1
2
µzi+ 1

2
− 1

h

n−1∑
i=2

µxi− 1
2

)
− h(σx1 + σxn) (3.23)

Observe that µz and µx not only have the same eigenvalues as σx and σz, but they also obey

the exact same commutation relations as we discovered in Eq. 3.20 and Eq. 3.21! Thus, if

we ignore the boundary terms on sites i = 1 and i = n for now – and simply rename µ 7→ σ

– we can see that Eq. 3.23 is of the exact same form as the 1d TFI Hamiltonian that we

started with! Precisely, we have that the bulk (the system excluding the boundary) energy

spectrum obeys:

E(h) = hE(1/h) (3.24)
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Thus, we have a relation between the 1d quantum Ising model at weak coupling and strong

coupling, which is indeed just Kramers-Wannier duality! However, there are a few subtleties

here which we intentionally swept under the rug for the time being.

First, there is obviously the issue of boundary conditions. From Eq. 3.23, it is clear that

different boundary conditions of the initial model will be mapped differently under the

duality map. Even more damningly, how do we define the duality mapping if our model is

defined on a ring, i.e if sites i = 1 and i = n are linked? Our definition of µzi relies on their

being a boundary to reach, but how will this work on a closed surface?

Secondly, suppose that we want to look at the image of the Ising chain with h ≫ 1 under

the duality mapping. We know from our earlier discussion that in this limit, there are two

ground states, |0⟩↑ and |0⟩↓. Under Kramers-Wannier duality, this model will be mapped

to another Ising chain with h ≪ 1, in which case we know there is a single unique ground

state, |0⟩. Consequently, the Kramers-Wannier transformation must map map two ground

states into one, meaning it is not only not unitary, but it is not even invertible!

Although this may be uncomfortable for those accustomed to symmetries being described by

groups, we will begin to explore how to cope with and appreciate the mathematical beauty

of non-invertible symmetries starting in the next section. In fact, the rest of this thesis will

be dedicated to examining the structure of non-invertible symmetries by focusing on the

Kramers-Wannier transformation.

3.2 A First Look at Topological Defects

Following arguments presented in [19] and [7], we will discuss Kramers-Wannier duality in

a modern context by introducing concepts like gauging and topological defects. We begin

by putting our theory on a ring; specifically, we add an extra link on the right of site n and

introduce the following boundary conditions:

|σi+n⟩ = (σxi )
t |σi⟩ = |(−1)tσi⟩ (3.25)

where |σi⟩ refers to the spin on the i’th site. When t = 0, we have periodic boundary

conditions (PBC), and when t = 1, we have twisted boundary conditions (TBC). Taking

into account these adjustments, our Hamiltonian becomes:

H = −
n∑
i=1

σzi σ
z
i+1 − h

n∑
i=1

σxi − (−1)tσznσz1 (3.26)

If t = 1, our Hamiltonian is modified from the usual Ising model and we say that there is

a Z2 defect on the link (n, 1), which we will call η. We will refer to the Hamiltonian with

this defect as H
(n,1)
η . Now, observe what happens when we perform a basis change on this

Hamiltonian by conjugating with σx1 :

σx1H
(n,1)
η σx1 = σx1 (−

n−1∑
i=1

σzi σ
z
i+1 + σznσ

z
1)σ

x
1 − h

n∑
i=1

σxi



CHAPTER 3. THE 1D TRANSVERSE FIELD ISING MODEL 31

= −
n−1∑
i=2

σzi σ
z
i+1 − σznσz1 − h

n∑
i=1

σxi + σz1σ
z
2 = H(1,2)

η (3.27)

As we can see, the σz1σ
z
2 term flipped its sign while the σznσ

z
1 term has reverted back to

normal! Thus, by simply performing a basis change of our Hamiltonian – something that

has absolutely zero impact on the energy spectrum and the overall physics of the theory –

we have moved the Z2 defect from link (n, 1) to link (1, 2)! It is clear that by repeatedly

conjugating with various σx’s we can continue to move this defect to any link on the lattice

that we like without changing any of the underlying physics; because of this, we say that

η is a topological defect. This twist or defect should be thought of as the non-trivial Z2

bundle over the circle (Fig. 3.3). The circle is twisted over itself, but the exact point at

which the kink was initially does not change its shape in any way – we can move the kink

to any point around the circle that we wish. Two defects on adjacent links can also interact

Figure 3.3: Z2 Principal Bundle over the Circle

with one another and fuse together. Indeed, consider the following Hamiltonian with defects

on sites (n, 1) and (1, 2):

H(n,1); (1,2)
η;η = −

n−1∑
i=2

σzi σ
z
i+1 − h

n∑
i=1

σxi + σznσ
z
1 + σz1σ

z
2 (3.28)

Now, observe that if we change basis by conjugating with σx1 on both sides, we obtain:

σx1H
(n,1); (1,2)
η;η σx1 = −

n−1∑
i=2

σzi σ
z
i+1 − h

n∑
i=1

σxi − σznσz1 − σz1σz2 = H (3.29)

Thus, two neighboring Z2 defects can be annihilated by acting by conjugation with a σx on

the site between them. We can also say that the two defects fuse together to produce the

trivial defect. We will visualize both the movement operators and the fusion operators

with the graphical calculus introduced below in Fig. 3.4.

Global symmetries are deeply related to topological defects; in fact, they are what makes

defects topological. They constrain the large-scale behavior of a system by dividing the

space of Hamiltonians into equivalence classes corresponding to the homotopy classes of

topological defects. In fact, we can actually reconstruct a global symmetry of a system just

by considering at a corresponding topological defect. For instance, consider starting from
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Figure 3.4: Action of conjugation by σxi+1 on H
(i, i+1)
η (movement) and H

(i, i+1); (i+1, i+2)
η; η

(fusion)

the untwisted Hamiltonian and conjugating it with σx1 to create defects on links (n, 1) and

(1, 2):

σx1Hσ
x
1 = −

n−1∑
i=2

σzi σ
z
i+1 − h

n∑
i=1

σxi + σznσ
z
1 + σz1σ

z
2 (3.30)

We can then move the defect on (1, 2) to (2, 3) by conjugating again by σx2 . Then, we can

move this defect all the way to the link (n− 1, n)by conjugating with σx3 , then by σx4 , and

so on all the way up to σxn−1. At this point, there are defects on (n − 1, n) and (n, 1),

so conjugating once more by σxn will annihilate these two defects and take us back to the

original Hamiltonian. This can be summarized by the following equation:

(σxn · · ·σx1 )H(σ1 · · ·σxn) = H (3.31)

Recognizing the product of σx operators on both sides as the Z2 symmetry operator S from

last section, this equation immediately implies:

[S,H] = 0 (3.32)

which is exactly the statement that the spin flip operator S is a symmetry of the Hamiltonian!

From this, we can see that global symmetries of the Hamiltonian and topological defects of

the lattice model are really just two sides of the same coin; we can start from either and

recover the other one.

3.3 Kramers-Wannier Duality from Gauging

Given the fact that topological defects live on the dual lattice and are intrinsically tied to

the symmetries of a system, we may start to wonder if they can help us to better understand

Kramers-Wannier duality in the 1d TFI.

Let us begin by extending our Hilbert space to include another spin that lives on each link

of the lattice; we will refer to these as dual spins. Labeling the site on the link between i

and i+ 1 as i+ 1
2 , we define a Hilbert space on the links of the lattice as:

H̃ =

n⊗
j=1

C2
j+ 1

2
(3.33)

Then, the extended Hilbert space containing both the spins and dual spins will simply be
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denoted by:

H = H⊗ H̃ (3.34)

The spins on the links will likewise be considered in terms of the eigenbasis of σ̃z
i+ 1

2

with

|+⟩i+ 1
2
and |−⟩i+ 1

2
denoting the absence and presence of a defect on the link i+ 1

2 , respec-

tively. Now, we define a Hamiltonian on our extended Hilbert space which measures whether

there is a defect on a given link and then acts with an appropriately modified Hamiltonian

on the sites:

H =
∑

a1, ··· , an = ±1

H
(1,2); ··· ; (n,1)
a1; ··· ; an ⊗ |a1 · · · an⟩ ⟨a1 · · · an| (3.35)

This amounts to adding an additional minus sign in front of every interaction term in the

Hamiltonian for which there is an η defect on the link between the two sites, which is exactly

captured by the following expression:

H = −
n∑
i=1

σzi σ̃
z
i+ 1

2
σzi+1 − h

n∑
i=1

σxi (3.36)

This process of summing over all possible defects on the links of our lattice is analogous

to coupling a QFT to background Z2 gauge fields. Observe now that our new gauged

Hamiltonian has a local symmetry for every site j of the original lattice generated by the

operator Uj := σ̃x
j− 1

2

σxj σ̃
x
j+ 1

2

, as we have:

[ Uj , H ] = −
n∑
i=1

[σ̃xj− 1
2
σxj σ̃

x
j+ 1

2
, σzi σ̃

z
i+ 1

2
σzi+1] = 0 (3.37)

which follows from the fact that the only potentially non-commuting terms will share exactly

two sites in common; thus, since {σzi , σxi } = 0, they will pick up two minus signs which cancel

when they commute past each other.

The fact that we can choose to act with a Uj on every single site without impacting the

energy of a configuration should less-so be thought of as a traditional symmetry which

constrains our system, but rather as a redundancy of the system. We refer to this kind

of symmetry as a gauge symmetry and the application of any number of Uj ’s as a gauge

transformation, as their application does not affect the physics but simply changes the

gauge in which we measure physical quantities.

But where does this redundancy come from? Recall that to introduce our extended, gauged,

Hilbert space and its Hamiltonian we simply naively summed over all possible ways of

putting topological defects on the links of our lattice. We did not take into account that

many configurations are equivalent to others by either moving defects around or fusing

defects together. Indeed, for each site of our original lattice, consider the following projection

operator as defined by our graphical calculus:

We will refer to this projection as a Gauss law on site j, as it is reminiscent of Gauss’s law

from electromagnetism. This projection simply enforces that our Hilbert space is defined

in such a way that incorporates the fusion of neighboring defects. Performing the sum over

the delta function, we obtain:
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Figure 3.5: Projection operator for fusion redundancies on site j

Figure 3.6: Gj simplified

In equation form, this is written as:

Gj =
1

2

(
1 + σxj ⊗ ( |++⟩ ⟨−−|+ |−−⟩ ⟨++|+ |−+⟩ ⟨+−|+ |+−⟩ ⟨−+| )j− 1

2 , j+
1
2

)
=

1

2
(1 + σ̃xj− 1

2
σxj σ̃

x
j+ 1

2
) (3.38)

Notice that the second term in the parentheses is exactly the gauge transformation Uj
operator from earlier:

Gj =
1

2
(1 + Uj) (3.39)

Thus, by enforcing the consistency of the fusion of consecutive defects by acting with the

Gauss law projector, we are in fact just projecting our Hilbert space onto the subspace in

which

UjH = H for all j (3.40)

In other words, by acting with the projector

G =

n∏
j=1

Gj (3.41)

on our extended Hilbert space H, we project onto the gauge-invariant subspace in which

the redundancy is removed. Since applying Gj to a site cuts the number of degrees of

freedom in half, applying G brings our extended Hilbert space from 22n dimensions back

down to 2n as we had originally. We denote the gauge-invariant subspace by:

Hgauged := GH (3.42)

This process of extending a Hilbert space by coupling to background defects and then

enforcing a Gauss law on each site is known more generally as gauging.
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Now, using the fact that

σ̃xj− 1
2
σxj σ̃

x
j+ 1

2
= 1 (3.43)

in Hgauged, we can rewrite our extended Hamiltonian from Eq. 3.36 as:

−
n∑
i=1

σzi σ̃
z
i+ 1

2
σzi+1 − h

n∑
i=1

σ̃xi− 1
2
σ̃xi+ 1

2
(3.44)

Observe that now the two terms in our Hamiltonian have seemingly swapped place. The

magnetic field term is now supported on two adjacent dual sites while the interaction term

is only supported on a single link and the two sites it’s attached to. We may wonder if there

is some basis change we can apply to make this seem more obvious. Naturally, the first

thing we should do is map σx
i− 1

2

σx
i+ 1

2

7→ σz
i− 1

2

σz
i+ 1

2

. We can do this by acting conjugating

each site simultaneously with the Hadamard matrix :

Hj+ 1
2
=

1√
2

(
σzj+ 1

2
+ σxj+ 1

2

)
(3.45)

It is straightforward to see that acting with a Hadamard on every link maps σx
j+ 1

2

←→ σx
j+ 1

2

,

which means our Hamiltonian transforms as: n∏
j=1

Hj+ 1
2

Hgauged

 n∏
j=1

Hj+ 1
2

 = −
n∑
i=1

σzi σ̃
x
i+ 1

2
σzi+1 − h

n∑
i=1

σ̃zi− 1
2
σ̃zi+ 1

2
(3.46)

Now, we want to see if we can express each σzi σ̃
x
i+ 1

2

σzi+1 term as an operator supported on

a single link i+ 1
2 . First, we define the following operator which is supported on two sites i

and j:

CZi,j =
1

2

(
1 + σzi + σzj − σzi σzj

)
(3.47)

We call this operator the controlled Z operator, as if the i’th spin is in the |+⟩ state, it does
nothing to the j’th state, where as if the i’th state is |−⟩, it acts on j with σzj .

It is fairly straight forward to check by hand that conjugating by CZj+ 1
2 , j+1 maps

σzj σ̃
x
j+ 1

2
σzj+1 7→ σzj σ̃

x
j+ 1

2
(3.48)

for all j. The intuition here is that the first CZj+ 1
2 , j+1 will act, and then σx

j+ 1
2

will swap

the control qubit so that the second CZj+ 1
2 , j+1 will act in the opposite way. This way, there

are always two σzj+1’s which will cancel each other.

It can be found similarly that conjugating by CZj, j++ 1
2
maps σzj σ̃

x
j+ 1

2

7→ σ̃x
j+ 1

2

. If we

conjugate by these two controlled Z’s for every j, our Hamiltonian becomes:

Hgauged = −
n∑
i=1

σ̃zi+ 1
2
− h

n∑
i=1

σ̃xi− 1
2
σ̃xi+ 1

2
(3.49)

which is exactly an Ising model on the dual lattice with inverse coupling, i.e Kramers-

Wannier Duality!

To summarize, we found that if we gauge the HamiltonianH(h) by summing over all possible



CHAPTER 3. THE 1D TRANSVERSE FIELD ISING MODEL 36

Z2 defects and imposing a Gauss law and then conjugate by the unitary operator:

UKW =
∏
j

Hj+ 1
2

∏
j

CZj− 1
2 , j

∏
j

CZj, j+ 1
2

(3.50)

we obtain h H̃( 1h ), where H̃ is the Ising Hamiltonian on the dual lattice.

This can be implemented by an operator KW : H → Hgauged which acts as:

(KW)σzi σ
z
i+1 = σ̃xi+ 1

2
(KW) (KW)σxi = σzi− 1

2
σzi+ 1

2
(KW) (3.51)

However, if we consider our theory to be on a closed ring (i.e periodic or anti-periodic

boundary conditions) then this operator is not only not unitary, but it is in fact non-

invertible. Indeed, if it was then we would have:

n∏
j=1

σxj =

n∏
j=1

(KW)
−1
σzj− 1

2
σj+ 1

2
(KW)

= (KW)
−1

 n∏
j=1

σzj− 1
2
σzj+ 1

2

 (KW)

Since the product of all pairs of Pauli-Z operators on a closed chain will cancel to the

identity, we obtain
n∏
j=1

σxj = 1 (3.52)

which is a contradiction, as the spin-flip symmetry also has −1 eigenstates. The non-

invertibility of the Kramers-Wannier gauging map reflects the non-local, topological nature

of this duality which will be explored in the final section of this thesis. The Kramers-Wannier

duality mapping (KW) can indeed be expressed as a highly non-local, but still closed form

operator, from which interesting fusion relations can be derived [20], [21], [7].

3.4 Fermionization of the Ising Model

While we have done a great deal of analysis of the symmetries of the 1d transverse field

Ising model, we have yet to discuss how to actually ”solve” this model. In this section, we

will show that this model can be mapped exactly onto a model of non-interacting particles,

called fermions, from which the energy spectrum can be more easily understood. Fermions

are particles which are created and annihilated from operators c†i and ci respectively which

obey the anti-commutation relations:

{ci, c†j} = δij {ci, cj} = 0 (3.53)

A Hamiltonian is then usually constructed from these creation and annihilation operators

from which it is easily found that the energy states are entirely determined by the number

of fermions. The fact that the particles anticommute tells us that there can only be one

particle per site (Pauli’s Exclusion principle) which then makes the problem even easier.
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Because of their anti-commuting nature, the Pauli matrices are naturally associated with

fermions, so it is very plausible to believe we can phrase the Ising Hamiltonian in terms

of fermionic creation and annihilation operators. The logical first step in expanding on

this hunch would be to defining creation and annihilation operators directly from the Pauli

matrices:

σ±
s i =

1

2
(σzi ± iσ

y
i ) (3.54)

It is easy to see that these operators obey the following (anti-)commutation relations:

{σ+
i , σ

−
i } = 1 [σ+

i , σ
−
j ] = 0 (3.55)

for i ̸= j. Thus, if we tried to write the Ising model in terms of operators like these, we

would essentially have a model in which particles behave mutually as fermions when they

occupy the same site but behave as bosons (commuting particles) when they are on different

sites. This is strange, but given that we are working in 1 spatial dimension, perhaps we

should expect such strangeness.

In one spatial dimension, there is not enough room for particles to exchange positions

without passing through one another. But since these particles behave as fermions when

they are on the same site, Pauli’s exclusion principle can be applied and intuitively these

particles will never be able to cross paths and hence will never be able to exchange positions.

Since these particles can never actually exchange positions, it is not crazy to assume that

in one dimension, particles that are fermions on the same site but are bosons on different

sites may as well simply be fermions altogether.

Of course this argument is not at all rigorous, but Jordan and Wigner indeed found a way

to show the relation between the 1d quantum Ising model and a system of free fermions

in 1928 [22]. Considering our lattice to have periodic boundary conditions, we begin by

defining new creation operators which create kinks that extend to various sites in the chain,

similar to the µzi operators from a couple setions ago:

f†i :=

 ∏
0< j < i

σxj

σ−
i fi =

 ∏
0< j < i

σxj

σ+
i (3.56)

It is a very straight forward computation similar to what we have been doing in the past

few sections to see that these new operators obey the following anti-commutation relations:

{fi, f†j } = δij {fi, fj} = 0 (3.57)

From here, we can observe that:

(fi − f†i )(fi+1 + f†i+1) = (σ+
i − σ

−
i )σ

x
i (σ

+
i+1 + σ−

i+1)

= iσyi σ
x
i σ

z
i+1

= σzi σ
z
i+1 (3.58)
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We also have that:

2f†i fi − 1 = 2σ−σ+ − 1

=
1

2
(σzi − iσ

y
i )(σ

z
i + iσyi )− 1

= (1 + iσzi σ
y
i )− 1

= σxi (3.59)

Thus, we can write the Ising Hamiltonian in terms of our creation and annihilation operators

via:

H = −
n∑
i=1

(fi − f†i )(fi+1 + f†i+1)− h
n∑
i=1

(2f†i fi − 1) (3.60)

Observe that the product of the creation and annihilation operator f†i fi has eigenvalues 1

and 0, which we interpret as counting whether or not site i has a fermion on it. With this

in mind, we define the total particle number operator to be:

N :=

n∑
i=1

f†i fi =

n∑
i=1

(1 + σxi )

2
(3.61)

From here, it is easy to see that:

[N,H] ̸= 0 (3.62)

which means that the total number of fermions is not conserved as the system evolves in

time. This is an issue if we plan to find the energy spectrum of the Ising model by treating

kinks in the chain as particles with discrete energy values.

To combat the issue of diagonalization, we will perform a discrete Fourier transform on our

creation operators to take them to momentum space. Specifically, denoting the position

at a site j by xj := ja where a is the lattice spacing, we write:

fk =
1√
n

n−1∑
j=0

fje
ikxj (3.63)

where the momentum can take on the following values k = 0, 2π
na , · · · ,

2π(n−1)
na . Taking the

inverse Fourier transform of Eq. 3.63 and plugging into the Hamiltonian in Eq. 3.60, we

find:

H =

n∑
i=1

(f†i fi+1 + f†i+1fi) +

n∑
i=1

(fi+1fi + f†i f
†
i+1)− h

n∑
i=1

(2f†i fi − 1)

=
∑
k

f†kfk(e
ika + e−ika)−

∑
k

(eikafkf−k + eikaf†kf
†
−k)− h

∑
k

(2f†kfk − 1)

=
∑
k

(
2f†kfk(cos ka− h)− (eikafkf−k + eikaf†kf

†
−k) + h

)
(3.64)
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From here, observe that we can symmetrize the second term to obtain:

∑
k

eikafkf−k =
1

2

(∑
k

eikafkf−k +
∑
k

e−ikaf−kfk

)

=
1

2

(∑
k

eikafkf−k −
∑
k

e−ikafkf−k

)
=
∑
k

i sin(ka)fkf−k (3.65)

where we used the fact that {fk, fk′ = 0}, which can be easily derived from Eq.3.63.

Plugging this expression into Eq. 3.64, we obtain:

H =
∑
k

(2f†kfk(cos ka− h)− i sin (ka)(fkf−k + f†kf
†
−k) + h) (3.66)

Now the Hamiltonian is in a form that will make it easy for us to diagonalize. Before we do

so, we want to remedy the fact that the number of fermions created by f† is not conserved.

To do so, we will use a method called the Bogoliubov transformation [23]. The idea is that

we want to find a new set of ”coordinates” for our creation and annihilation operators such

that the terms like fkf−k and f†kf
†
−k vanish. To perform our coordinate change, we define

a new operator:

γk = ukfk − ivkf†−k (3.67)

for some coefficients uk, vk ∈ R. We want γ†k and γk to be fermionic creation and annihilation

operators, so we should choose uk and vk such that:

{γk, γ†l } = δkl {γk, γl} = 0 (3.68)

It is easy to check that this places the following constraints on uk and vk:

u2k + v2k = 1 uk = u−k vk = −v−k (3.69)

This is satisfied if uk and vk are expressed in terms of trigonometric functions as:

uk = cos
θk
2

vk = sin
θk
2

(3.70)

for some θk. Now, after a bit of algebra, it can be found that the expression for γk can be

inverted to give:

fk = ukγk + ivkγ
†
−k (3.71)

Plugging Eq. 3.71 into the expression for the Hamiltonian we found in Eq. 3.66, we find

the following after a good bit of simplification:

H =
∑
k

((
A(u2k − v2k) + 4Bukvk

)
γ†kγk + i

(
Aukvk −B(u2k − v2k)

) (
γkγ−k + γ†kγ

†
−k

)
+ h+Av2k − 2Bukvk

)
(3.72)
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where A := 2(cos ka− h) and B := sin ka. Now, we’d like to choose θk, as in Eq. 3.70, such

that the non-diagonal term vanishes. For this to happen, we need:

Aukvk −B (u2k − v2k) = A cos
θk
2

sin
θk
2
−B(cos2

θk
2
− sin2

θk
2
) = 0 (3.73)

From basic trig identities, we find that this implies that θk must satisfy:

tan θk =
sin ka

cos ka− h
(3.74)

With this choice of θk, we find after some straight forward, but tedious, computation that

our Hamiltonian becomes:

H =
∑
k

ϵk

(
γ†kγk −

1

2

)
(3.75)

where

ϵk = 2
√

1− 2h cos ka+ h2 ≥ 0 (3.76)

Observe that this Hamiltonian has the following commutation relations with the creation

and annihilation operators for all k:

[H, γ†k] = ϵkγ
†
k [H, γk] = −ϵkγk (3.77)

Thus, any ground state |Ψ0⟩ with energy E0 must obey γk |Ψ0⟩ = 0 for all k, as otherwise:

Hγk |Ψ0⟩ = (E0 − ϵk)γk |Ψ0⟩ (3.78)

meaning γk |Ψ0⟩ has a lower energy than |Ψ0⟩, which is a contradiction.

This means that the ground state energy of the 1d transverse field Ising model is:

E0 = −1

2

∑
k

ϵk (3.79)

and the possible eigenstates of our Hamiltonian are simply given by every way of acting

with distinct fermionic creation operators on the ground state(s):{
(γ†k1)

i1 · · · (γ†kn)
in |Ψ0⟩

∣∣∣ i1, . . . , in ∈ {0, 1}, H |Ψ0⟩ = E0 |Ψ0⟩
}

(3.80)

where we have to take into account that for h ≪ 1 the ground state is doubly degenerate,

as we found in a previous section.

Thus, the entire energy spectrum can be solved exactly:

Spec(H) =

{
E0 +

∑
k

ikϵk

∣∣∣∣∣ ik ∈ {0, 1} ∀ k
}

(3.81)

From the ground state energy, an exact expression for the free energy of the 2d classical

Ising model in the thermodynamic limit can be found, meaning that we can finally exactly

solve the 2d Ising model.
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3.5 A Peek into Conformal Field Theory

To summarize, the previous section, we began by performing a Jordan-Wigner transforma-

tion to express Ising spins in terms of non-interacting fermions living on the sites of the

chain. Then, we took the discrete Fourier transform of the Hamiltonian to instead consider

particles in terms of their momenta k = 2πj
na for lattice sites j = 0, 1, · · · , n− 1. Lastly, us-

ing a Bogoliubov transformation, we mapped the 1d quantum Ising model into the following

Hamiltonian:

H =
∑
k

ϵk

(
γ†kγk −

1

2

)
(3.82)

where ϵk = 2
√
1− 2h cos ka+ h2 ≥ 0 is the energy of a single fermion of momentum k. We

refer to the lowest possible energy of a fermion as the gap of the system. It is easy to see

from the expression for ϵk that its lowest possible value is for a fermion of momentum k = 0,

in which case its energy is:

ϵmin = ϵ0 = 2
√
h2 − 2h+ 1 = 2|h− 1| (3.83)

Curiously, at h = 1, the system becomes gapless, meaning that for large enough n, there

exists particles of arbitrarily low energy which will completely dominate the behavior of

the system at low temperatures. One may wonder if h = 1 is then the point at which the

model undergoes a phase transition from the ordered phase with the degenerate ground

state to the disordered phase with the unique ground state. Indeed, from our expression for

the partition function in terms of the ground state energy in Eq. 3.4, we find that we can

identify the free energy density with the ground state energy density, giving the following

expression:

f = −1

2
lim
n→∞

1

na

n∑
j=0

ϵ 2πj
na

= −1

2

∫ π

−π

dk

2π
ϵk (3.84)

From here, as was found by Onsager all the way back in the 40s through a different method,

it can be found that the second derivative of f has a singularity at h = 1, finally proving

that there is a phase transition at h = 1.

Not only is there a phase transition, but recall from Eq. 3.6 that the correlation length of

the Ising model is given by:

ξ =
1

E1 − E0
(3.85)

where E1 is the energy of the first excited state. But since at h = 1 the system is gapless,

we have ξ →∞, essentially meaning that changes in spins will propagate infinitely far. This

interesting behavior leads us to say that the phase transition at h = 1 is critical.

Because of the infinite correlation length, there is no intrinsic length scale of our system –

the microscopic details of the system smooth over and the lattice spacing becomes irrelevant.

At h = 1, we can zoom out indefinitely, taking the lattice spacing to be 0 in the spatial

direction as well while leaving all of the interactions in the system intact and ensuring that
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all important physical quantities remain finite.

We now consider the continuum limit of this theory near the critical point h = 1. For small

ka≪ 1, we expand the cosine:

cos(ka) ≈ 1− 1

2
(ka)2,

which gives

ϵk ≈ 2
√
(1− h)2 + h(ka)2. (3.86)

At the critical point h = 1, this becomes a linear dispersion relation:

ϵk ≈ 2|k|a. (3.87)

Thus, the low-energy excitations are relativistic, with velocity v = 2a. Taking the continuum

limit involves sending the lattice spacing a→ 0, while keeping the total length L = na fixed.

The momentum becomes a continuous variable k ∈ R, and the sum turns into an integral:

H →
∫ Λ

−Λ

dk

2π
ϵk

(
γ†kγk −

1

2

)
, (3.88)

where Λ ∼ π/a is a UV cutoff set by the finite size of the lattice.

At h = 1, we substitute ϵk = 2|k|a:

H =

∫ Λ

−Λ

dk

2π
2|k|a

(
γ†kγk −

1

2

)
. (3.89)

We now rescale the fermion operators to define a continuum field:

ψk :=
√
a γk, (3.90)

so that the canonical anticommutation relations remain finite as a → 0. The Hamiltonian

becomes:

H =

∫ ∞

−∞

dk

2π
v|k|

(
ψ†
kψk −

1

2

)
, with v = 2a. (3.91)

To Fourier transform back to position space, we define the continuum field

ψ(x) :=

∫
dk

2π

(
γke

ikx + γ†ke
−ikx

)
. (3.92)

Although the Bogoliubov fermions γk and γ†k appear to be complex, recall that they are in

fact related by

γ†k = γ−k, (3.93)

which follows from the structure of the Bogoliubov transformation:

γk = ukfk − ivkf†−k, γ†k = ukf
†
k + ivkf−k, (3.94)
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together with the symmetry conditions uk = u−k and vk = −v−k, which were imposed to

ensure fermionic statistics and diagonalization of the Hamiltonian.

Using this identity, the field ψ(x) becomes manifestly real:

ψ(x) =

∫
dk

2π

(
γke

ikx + γ−ke
−ikx) = ψ(x)†. (3.95)

Thus, the field ψ(x) satisfies a reality condition and describes a Majorana fermion in the

continuum limit.

In terms of this field, the Hamiltonian becomes:

H =
i

2

∫
dxψ(x)∂xψ(x), (3.96)

which is the Hamiltonian of a massless Majorana fermion in 1 + 1 dimensions. This theory

is a conformal field theory with central charge c = 1
2 . The criticality of the Ising model

at h = 1 manifests naturally in this continuum limit as invariance under local conformal

transformations. In two dimensions, this symmetry is generated by an infinite-dimensional

algebra which places strong constraints on all of the correlation functions, allowing the

theory to be solved exactly!

In conformal field theory, observables are represented by local operators, and among these,

a special class known as primary operators play a fundamental role. These are local fields

O(z, z̄) that transform covariantly under conformal transformations such as to leave their

correlation functions invariant:

O(z, z̄) 7→
(
df

dz

)−h(
df̄

dz̄

)−h̄

O(f(z), f̄(z̄)), (3.97)

where h and h̄ are called the conformal weights of the operator. Primary operators are

annihilated by the positive modes of a central extension of the 2d conformal algebra, known

as the Virasoro algebra, and serve as the highest-weight states in the representation theory

of the conformal symmetry. All other local fields in the theory can be built as derivatives

or products of these primaries, known as descendants.

In the Ising conformal field theory, which describes the critical point (h = 1) of the 2d

classical Ising model and the massless Majorana fermion, there are only three primary

fields:

Operator Name Conformal Weights

1 Identity (0, 0)

ε(z, z̄) Energy density
(
1
2 ,

1
2

)
σ(z, z̄) Spin field

(
1
16 ,

1
16

)
Table 3.1: Primary fields in the critical 2D Ising CFT and their conformal weights.
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These fields obey nontrivial fusion rules, such as:

σ × σ = 1+ ε, ε× ε = 1, σ × ε = σ. (3.98)

These rules reflect the possible channels through which operator insertions can fuse, and

they encode the underlying algebraic structure of the theory. The expression of correla-

tion functions in terms of fusion rules naturally leads one to reinterpret them in terms of

topological defect lines, known as Verlinde lines—perhaps the first motivating example of

topological defects in the sense considered in this thesis [24]. We will see in the final chapter

that the structure of these defects is closely related to the topological defects we encoun-

tered in the 1d quantum Ising chain, and that they naturally arise as manifestations of the

Z2 global symmetry and Kramers-Wannier duality in the 2d classical Ising model. From

this perspective, we argue that the solvability of conformal field theories is not merely a

consequence of conformal symmetry, but rather stems from something more fundamental:

the fact that in two dimensions, such theories admit a rich algebraic structure of topological

defect lines, inherited from the symmetries of the underlying lattice model.



Chapter 4

Fusion Categories and

Topological Defects

Whether they are introduced to explain Kramers-Wannier duality in terms of gauging the

global Z2 symmetry in the 1d quantum Ising model or you take the continuum limit and

introduce them to understand the fusion of primary operators in the Ising CFT, topolog-

ical defect lines are crucial to understanding the nuances of physical systems. Therefore,

understanding the mathematical structure of these defects is vital to understanding the

global symmetries of even the most basic physical models. It turns out that the most

natural mathematical language in which we can understand the essence of these defects is

category theory.

4.1 Why Category Theory?

You have likely heard that category theory is just abstract nonsense – so what could it

possibly have to do with physics? Before we answer this, let’s define what exactly a category

is.

Definition 4.1.1

A (small) category C consists of:

1. A set of objects, called Ob(C); we typically refer to an object by simply x ∈ C.
2. For each pair of objects x, y, a set of morphisms Hom(x, y).

3. A composition rule: for any f ∈ Hom(x, y) and g ∈ Hom(y, z), there is a

composite morphism g ◦ f ∈ Hom(x, z).

This data satisfies:

• Associativity: (h ◦ g) ◦ f = h ◦ (g ◦ f) whenever the compositions are defined.

• Identity: For each object x, there exists an identity morphism idx ∈ Hom(x, x)

such that idx ◦ f = f and g ◦ idx = g for all appropriate f, g.

Some of the classic, motivating examples of categories for the working mathematician are

45
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as follows:

• Set: The category whose objects are sets and morphisms are functions between sets.

• Grp: The category whose objects are groups and morphisms are homomorphisms

between groups.

• VecC: The category whose objects are finite-dimensional vector spaces over C and

whose morphisms are C-linear maps.

However, these categories are not very instructive for understanding why category theory

may be useful for a practicing physicist. A more intuitive example is the following:

Example.

Consider the category Tangle, whose objects are finite collections of oriented points

in R3 and whose morphisms are given by arrows that connect two collections of points

together according to the orientation of the points. For instance, a morphism from

(+−+−−+) to (−−+−) is given below:

Figure 4.1: Morphism from (+−+−−+) to (−−+−)

Now, an associative composition is defined on morphisms by stacking two diagrams on

top of each other, and the identity morphism from an object to itself simply consists of

straight lines connecting each point to its copy. We kill two birds with one stone and

show the composition of a morphism from (+−) to (−+) with the identity map of (−+)

to itself below:

Figure 4.2: Composition of morphism with identity

Expanding upon the importance of morphisms, we should define a notion of a structure-



CHAPTER 4. FUSION CATEGORIES AND TOPOLOGICAL DEFECTS 47

preserving map between two categories.

Definition 4.1.2

Let C and D be categories. A functor F : C → D consists of:

• An assignment to each object X ∈ Ob(C) an object F (X) ∈ Ob(D),
• An assignment to each morphism f : X → Y in C a morphism F (f) : F (X)→
F (Y ) in D,

such that the following conditions hold:

1. (Preservation of identities) For every object X in C,

F (idX) = idF (X).

2. (Preservation of composition) For all morphisms f : X → Y and g : Y → Z

in C,
F (g ◦ f) = F (g) ◦ F (f).

Category theory provides a natural language for describing topological defects, since it is

not particularly meaningful to consider a defect at a single site. The essence of topological

defects lies in how they can be deformed with local operators in ways that preserve the

partition function. The topological defects in a (1 + 1)-d system naturally form a category

with objects as equivalence classes of defects and morphisms coming from local operators

which either map a defect into itself or potentially into another kind of defect.

However, a plain-old category is not enough to encapsulate all of the important properties

of topological defects. To start, we know that we need some way of summing over multiple

defects on a single site as we did during our gauging procedure. We also know that we

should be able to fuse two defects together to obtain a new one; it would also be nice to

have some way of creating a pair of defects from the vacuum or annihilating two defects as

we had with the Z2 defects. With these needs in mind, we will try and enrich our original

definition of a category with new structures.

4.2 What is a 2-Vector Space?

In this section we will define an additive structure for categories and see how it can be viewed

as a higher-dimensional generalization of vector space. No one denies the usefulness of linear

algebra in physics, so as we generalize our physical theories to have higher dimensional

symmetry operators, it only makes sense that we should have a higher version of our usual

linear algebra as well.

Before we do anything else, we want to formalize the notion of two objects being equivalent

in a category. To do so, we say that a morphism f ∈ Hom(x, y) as an isomorphism if there

exists another morphism g ∈ Hom(y, x) such that g ◦ f = idx and f ◦ g = idy. If there exists

an isomorphism between two objects a and b we say that a and b are isomorphic, or a ≃ b.

With this out of the way, we know that in a category of topological defects, morphisms

should be given by linear operators acting on a Hilbert space. However, presently, we have
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no notion of taking linear combinations of morphisms. To account for this, we define the

following notion:

Definition 4.2.1

Definition. A linear category (over C) is a category C such that for every pair of

objects x, y ∈ C, the hom-set HomC(x, y) is a vector space over C, and composition

of morphisms is bilinear in both arguments.

A linear functor between linear categories is a functor F : C → D such that

for all morphisms f, g ∈ HomC(x, y) and all scalars α, β ∈ C,

F (αf + βg) = αF (f) + βF (g).

An easy example of a linear category is the category VecC, as the set of linear maps between

two vector spaces naturally forms a vector space. We also know that we can take direct

sums of vector spaces; perhaps we can try to generalize this property to other categories so

that we can utilize it in our description of topological defects.

Let’s think about what makes VecC so special – why can we take direct sums in this category

but not in any generic category, and what are the essential properties of the direct sum?

Well, for starters, if V and W are vector spaces, then there are canonical embeddings

iV : V ↪−→ V ⊕W and iW :W ↪−→ V ⊕W , as well as canonical projections πV : V ⊕W −→ V

and πV : V ⊕W −→ W . Since V and W do not mix with each other inside of their direct

sum, it’s clear that these embeddings and projections will clearly obey:

πV ◦ iV = idV πW ◦ iW πW ◦ iV = 0 πV ◦ iW = 0 (4.1)

We also know that we can reconstruct the direct sum from the information we get from the

projections, meaning:

iV ◦ πV + iw ◦ πW = idV⊕W (4.2)

Since nothing in these conditions is specific to vector spaces, these properties can be gener-

alized to an arbitrary linear category:

Definition 4.2.2

Given a finite collection of objects c1, · · · , cn ∈ C, we say that an object c = c1 ⊕
· · · ⊕ cn is a direct sum if there exists morphisms ij : cj → c and πj : c → cj that

obey the following conditions:

1. πi ◦ ij = δij idcj for all i and j

2.
n∑
j=1

ij ◦ πj = idc for all j.

It is important to note that we can write any morphism f : c → d between direct sums
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c :=
⊕n

i=1 ci and d :=
⊕m

i=1 di as a matrix equation:
d1
...

dn

 =


π1 ◦ f ◦ i1 · · · π1 ◦ f ◦ in

...
. . .

...

πm ◦ f ◦ i1 · · · πm ◦ f ◦ in



c1
...

cn

 (4.3)

This gives a canonical isomorphism of vector spaces

Hom(

n⊕
i=1

ci,

m⊕
j=1

dj) −→
n⊕
i=1

m⊕
j=1

Hom(ci, dj) (4.4)

where the
⊕

’s on the right hand side are simply the direct sums of vector spaces.

Another aspect of vector spaces that we’d like to replicate in other categories is the fact that

every vector space can be broken up into the direct sum of smaller vector spaces. There is

also the trivial vector space {0} that acts as a sort of additive identity for the direct sum.

One clever way of expressing these properties in terms of morphisms in a generic category

is to define the following notion:

Definition 4.2.3

Let x ∈ C and e ∈ Hom(x, x). We say that e is an idempotent if e ◦ e = 0. Further-

more, we say that e splits if there exists an object y ∈ C, which we call the image of

e, with morphisms r : x → y and s : y → x such that r ◦ s = idy and s ◦ r = e. If

every idempotent splits, we say that C is idempotent complete. Furthermore, if every

collection of objects in C admits a direct sum on top of this, we say that C is Cauchy

complete.

In the above definition, we think of r as a projection from a bigger object x to a smaller

object y and we think of s : y ↪−→ x as an embedding. It is a non-trivial but simple exercise to

show that both the direct sum of a collection of objects and the image of an idempotent are

unique up to isomorphism. Thus, Cauchy completeness is a condition that gives us many

of the important properties that we wanted to replicate from vector spaces.

Remark.

Cauchy completeness is a very nice property, not only because it lets us break apart

objects and build new ones, but it also gives us an additive identity 0 such that a⊕0 ≃ a
for all a ∈ C, for free.

Proof. Indeed, since 0 ∈ Hom(x, x) is an idempotent for any object x, in a Cauchy

complete category there must exist an object y along with morphisms r : x → y and

s : y → x such that r ◦ s = idy and s ◦ r = 0. It is easy to see from here that this implies

idy = 0, from which it follows that Hom(y, y) = 0. Then, for every object z we have an

object y ⊕ z equipped with the appropriate morphisms, but since all morphisms from y

to y are zero, we have iz ◦ πz + 0 = idy⊕z this implies that iz is an isomorphism from z

to y ⊕ z. Thus, y is an additive identity for ⊕.
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It isn’t hard to see that y is unique up to isomorphism, as if y′ is another zero, we have

y′ ≃ y ⊕ y′ ≃ y. We thus can refer to y unambiguously as the zero object, 0.

For any non-negative integer N and an object c ∈ C, we denote Nc := c⊕ · · · ⊕ c as simply

adding c with itself N times. Now that we have some way of adding together objects and

scaling them by integers, it would be nice if we could have some notion of a basis from which

we can construct any other object in the category. The objects in this basis should not be

able to decomposed any further and they should be easily distinguishable from each other:

rmkb We say an object c ∈ C is simple if dim(Hom(c, c)) = 1. We denote the set of all simple

objects in the category as Irr(C) in analogy with the set of irreducible representations of

a group. Furthermore, we say that two objects x, y ∈ C are distinct if Hom(x, y) = {0}.
These definitions make sense in the context of topological defects, as we know that there

are defects that cannot be deformed into one another via local operators; for example, the

trivial defect and a Z2 defect on a single link.

Definition 4.2.4

We say that a Cauchy complete category C is finitely semisimple if there exists a finite

collection of pairwise distinct, simple objects c1, · · · , cn ∈ C such that for any other

object c ∈ C there exists non-negative integers N1, · · · , Nn so that c ≃
⊕n

i=1Nici.

Remark.

This definition of semisimplicity immediately implies (and is in fact equivalent to) that

any morphism is determined by where it sends the ”basis vectors” or simple objects. By

this, I mean that the composition of morphisms gives an isomorphism:

n⊕
i=1

Hom(a, ci)⊗C Hom(ci, b) −→ Hom(a, b) (4.5)

Notice the similarities of this expression and the usual formula for matrix multiplication

in a vector space. This also solidifies the analogy of thinking of the simple elements

of a category as an orthonormal basis, as if we think of Hom(−,−) as a sort of ”inner

product”, the isomorphism in Eq. 4.5 is very similar to the notion of inserting a complete

set of basis states

⟨a| b⟩ =
∑
i

⟨a| ci⟩ ⟨ci| b⟩ (4.6)

as we are used to doing in quantum mechanics.

This motivates the following definition:
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Remark.

Before proceeding, we briefly introduce two standard categorical notions that we have

glossed over: the product of categories and the notion of a natural transformation be-

tween functors. These will be important for interpreting equivalences between categories

and for understanding the structure-preserving properties of tensor products.

First, given two categories C and D, we define their product category C × D as follows:

• Objects are pairs (c, d) with c ∈ C and d ∈ D.

• Morphisms are pairs (f, g) : (c1, d1) → (c2, d2) with f ∈ Hom(c1, c2) and g ∈
Hom(d1, d2).

• Composition is defined componentwise: (f2, g2) ◦ (f1, g1) = (f2 ◦ f1, g2 ◦ g1).

We also define the direct sum of two linear categories C and D, C ⊕ D as the linear

category defined by the following:

• The underlying category of C ⊕ D is C × D

• The linear structure on the Hom spaces is given by the direct sum of the Hom

spaces in C and D, i.e Hom ((c, d), (c′, d′)) = Hom(c, c′)⊕Hom(d, d′)

Secondly, given two functors F,G : C → D, a natural transformation η : F ⇒ G is a

collection of morphisms

ηc : F (c)→ G(c) for each c ∈ C

such that for every morphism f : c1 → c2 in C, the following diagram commutes:

F (c1) F (c2)

G(c1) G(c2)

F (f)

ηc1 ηc2

G(f)

We say that η is a natural isomorphism if every component ηc is an isomorphism.

Definition 4.2.5

A 2-vector space is a finitely semisimple, Cauchy complete, linear category.

This name goes further than mere analogy. In fact, it can be shown that any 2-vector space

C is equivalent to the direct sum of an integer number of copies of VecC [25]:

C ≃ Vec⊕nC (4.7)

Here, by equivalence, we mean that there is a functor from C to Vec⊕nC with a two-sided

inverse up to natural isomorphism. Since vector spaces are completely described up to

isomorphism by their dimension (a non-negative integer), we can think of the integer multi-

plication of objects as a sort of scalar multiplication by the “ground field” VecC. Specifically,

for a vector space V ∈ VecC with dim(V ) = n, we a “scalar multiplication” of an object
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c ∈ C via:

V ⊗ c 7→ dim(V ) · c =
n⊕
i=1

c (4.8)

We summarize the properties of 2-vector spaces in Table 4.1 below in relation with usual

vector spaces.

2-Vector Spaces Vector Spaces

≃ Vec⊕nC ≃ Cn
Linear categories Vectors

Direct sum of objects Vector addition
Multiplication by elements of VecC Scalar multiplication by C

Simple objects Irr(C) Basis vectors
Linear functors and morphisms Linear maps and operators

Table 4.1: Comparison between 2-vector spaces and ordinary vector spaces

4.3 What is a Monoidal Category?

There are still a few properties that we need to enrich our category with if we want to

describe topological defects mathematically. By the end of this section, we will have a fully

functioning category theory with an intuitive graphical calculus that naturally describes the

fusion of topological defects.

First off, we know that since the morphisms in a category of topological defects should

be described by unitary operators acting on a Hilbert space, we need to incorporate some

notion of taking the ”dagger” of a morphism.

Definition 4.3.1

A unitary category is a linear category C equipped with a conjugate-linear map

† : Hom(a, b) −→ Hom(b, a) for every a, b ∈ C that satisfies:

• (f ◦ g)† = g† ◦ f†

• (f†)† = f

• f† ◦ f = 0 if and only if f = 0.

for all morphisms f : x→ y and g : y → z and every x, y, z ∈ C.

Note that these conditions imply that id†x = idx for all x. Accordingly, we define a dagger-

functor to be a linear functor F between two dagger categories such that for every morphism

f , we have:

F (f†) = F (f)† (4.9)

An example of a unitary category is HilbC – the category of finite dimensional Hilbert

spaces over C.

Now, recall from the previous section that if we had two defects on adjacent sites, we could

fuse them together into form a new defect on a single site:

Thus, our category should have some notion of a fusion product in which objects can be
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Figure 4.3: Fusion of Two Adjacent Defects

combined. Topological defects are just a generalization of particles; they are merely local

excitations and deformations of the Hamiltonian of a system which can be moved around

and fused together. We already have a good reference category which physicists have been

using to describe how particles fuse together and split into new ones since the beginning

of quantum mechanics. Namely, the category Rep(G) – the category of representations

for a symmetry group G of a physical theory. For almost a hundred years, it has been

known that the angular momentum of a particle in quantum mechanics corresponds to an

irreducible representation (irrep) of SU(2), and that the combination of two particles of

angular momenta j1 and j2 is given by tensoring the two representations and then splitting

the result into a direct sum of irreps using the Clebsch-Gordan rules. Indeed, this seems

like a semisimple category that is just endowed with an additional tensor product.

Example.

The category Rep(G) of representations of a finite group G forms a 2-vector space, as it

has:

• Objects which are the representations of G

• Morphisms which are intertwiners between two representations (V, ρ) and (W, η),

i.e a linear map φ : V −→W such that

η(g) ◦ φ = φ ◦ ρ(g) (4.10)

for all g ∈ G. Since these are linear maps, the Hom-spaces form vector spaces over

C
• The direct sum ⊕ is simply the direct sum of representations with the 0 object

being the trivial representation {0}.
• The simple objects are the irreducible representations of G (up to isomorphism).

That they are mutually distinct objects comes from the famed Schur’s lemma.

Here, we specify that G is a finite group, as we want to ensure that there are a finite

number of irreducible representations. This means that Rep(SU(2)) is not a 2-vector space,

but there are categories which are very closely related to it which we will see later.

Now, we want to define a type of tensor product on categories which generalizes the prop-

erties of the tensor product of representations so we can describe the fusion rules of defects.
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We expect that this fusion product be somewhat associative insofar as fusing two particles

and then fusing the result with another should be related in some way to if we first fused

the other two particles and then fused the result with the third as can be seen in Figure 4.4.

Figure 4.4: Visualization of ”associativity” of topological defects

Definition 4.3.2

A monoidal category is a linear category C equipped with the following:

• A bilinear functor ⊗ : C × C −→ C
• A natural isomorphism α between the functors (−⊗−)⊗− and −⊗ (−⊗−)
from C × C × C −→ C.

• A distinguished multiplicative identity element 1 ∈ C along with natural iso-

morphisms λ and ρ with components λc : 1 ⊗ c → c and ρc : c ⊗ 1 for all

c ∈ C.
such that the pentagon and triangle diagrams in Fig. 4.5 and Fig. 4.6 commute for

all x, y, z, w ∈ C.

(x⊗ 1)⊗ y x⊗ (1⊗ y)

x⊗ y

αx,1,y

ρx⊗idy

idx⊗λy

Figure 4.5: Triangle identity diagram for a monoidal category

((x⊗ y)⊗ z)⊗ w (x⊗ (y ⊗ z))⊗ w

x⊗ ((y ⊗ z)⊗ w)

x⊗ ((y ⊗ z)⊗ w) x⊗ (y ⊗ (z ⊗ w))

αx,y,z⊗idw

αx,y⊗z,w

αx,y⊗z,w

idx⊗αy,z,w

αx,y,z⊗w

Figure 4.6: Pentagon identity diagram for associators in a monoidal category

The triangle identity simply serves to ensure that the associator and the unitors play nicely

together, while the pentagon identity ensures that all possible ways of putting parentheses
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around 4 objects are related to one another. Notice that VecC and Rep(G) are both monoidal

categories with their usual tensor products and trivial associators and unitors. There are

also many more unique monoidal categories which are of use in physics:

Example.

Let G be a finite group. We define the category Vec(G) to be the category of G-graded

vector spaces; i.e vector spaces V that can be decomposed as V =
⊕

g ∈G Vg. Vec(G)

has a well-defined monoidal product V ⊗W whose components are given by:

(V ⊗W )g =
⊕
hk=g

Vh ⊗Wk (4.11)

If we identify the identity element as Ce, where e is the identity of G, and endow Vec(G)

with the trivial associator and unitors from VecC, it becomes a monoidal category. How-

ever, this is not the only choice of associator and unitors compatible with Vec(G) and

the tensor product in Eq. 4.11. Indeed, suppose we want to have a non-trivial associator,

which acts as αg,h,k = ω(g, h, k)idghk, for some non-zero complex number ω(g, h, k) ∈ C∗.

Plugging this new associator into the pentagon identity, we find that the conditions for

a monoidal category still hold so as long as :

ω(h, k, l)ω(g, hk, l)ω(g, h, k) = ω(gh, k, l)ω(g, h, kl) (4.12)

for all g, h, k, l ∈ G. This is a well-known concept in group cohomology; we say that

ω : G × G × G −→ C∗ must be a 3-cocycle ω ∈ Z3(G, C∗). Then, if we plug this into

the triangle identity, we find that the monoidal structure is preserved if we adjust the

unitors as:

λg = ω(1, 1, g)−1 idg ρg = ω(g, 1, 1) idg (4.13)

We thus refer to the category of G graded vector spaces in general as Vecω(G) for a

3-cocycle ω, where we say the category is twisted by ω if it is non-trivial.

We now define a graphical calculus for monoidal categories which will make future calcu-

lations much more intuitive and solidify their relation to topological defects. We represent

objects as 1d strings and morphisms as 2d coupons at the interface between two strings. A

morphism f : a→ b is pictured below:

f

b

a

The composition of two morphisms f : a→ b and g : b→ c is given by the vertical stacking

of the two coupons:

g

f

c

b

a

= g ◦ f

c

a
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Because of this, we denote the identity morphism on an object by simply drawing the string

with no coupon on it.

We represent the tensor product of two objects by simply placing them side by side. We can

consider morphisms as coupons that are connected to both strings or split up the morphism

and move them around vertically as we please.

f ⊗ g

c⊗ d

a⊗ b

= f

g
c d

a b

=

f

g

c d

a b

= f g

c d

a b

This vertical isotopy is justified by the isomorphism:

Hom(a⊗ b, c⊗ d) −→ Hom(a, c)⊗C Hom(b, d) (4.14)

which arises naturally from the factthat − ⊗ − is a bilinear functor combined with the

universal property of the tensor product of vector spaces. From this, we can find that for

any morphisms f : a→ c and g : b→ d, we have:

(idc ⊗ g) ◦ (f ⊗ idb) = f ⊗ g = (f ⊗ idd) ◦ (ida ⊗ g) (4.15)

We will sometimes represent the multiplicative identity, 1, by a dashed line, but oftentimes

we will completely omit it and the unitors.

λa

1 a

a

=

a

= ρa

a 1

a

We do a similar thing with the associator; we will either represent it by regrouping the wires

or simply omitting it entirely:

αa,b,c

a b c

a b c

=

a b c

=

a b c

It can be proven rigorously using what is known as MacLane’s coherence theorem that any

equation between morphisms holds if and only if it holds in our outlined graphical calculus,

up to isotopy [26]. It is not very informative to do so, so we will not include the proof.

4.4 What is a Fusion Category?

The final ingredient needed to define a fully functional mathematical structure of topological

defects is a notion that allows a pair of defects to be spontaneously created from the vacuum
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or to annihilate with each other. This should not be thought of as a multiplicative inverse,

but rather as a dual object – in the same sense that vector spaces have duals, which provide

natural maps to and from the ground field when paired together.

Definition 4.4.1

Let C be a monoidal category. We say that the right dual of an object c is an object

c∨ equipped with morphisms evc : c⊗c∨ → 1 and coevc : 1→ c∨⊗c, which we denote

with the following graphical calculus:

c c∨

ev

c∨ c

coev

We require ev and coev to obey the snake equations:

c∨

c∨

c
=

c∨

c

c

c∨
=

c

A left dual of an object c is an object ∨c whose right dual is isomorphic to c, meaning

(∨c)
∨ ≃ c. If an object has both a right and left dual, we say that object is dualizable.

Then, if every object in the category is dualizable, we say that the category is rigid.

This property is incredibly useful as it allows us to consider every diagram in our graphical

calculus up to isotopy, leading naturally to the interpretation of objects in a monoidal

category as topological defects in a physical system.

It is important to note that for a general rigid monoidal category, the left and right duals of

an object are not necessarily the same. However, if the category is unitary, then if we take

the dagger of both sides of each snake equations – corresponding to time reversal symmetry,

or reflecting the diagrams across the horizontal axis – we find that c∨ is both the left and

right dual of c. Hence, in a unitary rigid monoidal category, which we will typically be

working with in a physics setting, we can speak generally of the dual of an object without

having to differentiate between right and left.

Example.

The most obvious example of a rigid monoidal category is VecC.

• The dual of a vector space V in the category, is simply given by the usual dual

vector space V ∗.

• The evaluation map is given by the inner product ⟨w |v⟩ ∈ C
• The coevaluation map is defined by the linear map 1 7→

∑
i |vi⟩ ⟨vi|, where {vi} is

an ONB of V .

It is straightforward to check that these definitions satisfy the snake equations.
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With this, we can finally define the structure that we have set out to find.

Definition 4.4.2

A unitary fusion category is a rigid, unitary monoidal 2-vector space C such that

1 ∈ Irr(C).

The only extra consistency condition we need to impose is that the monoidal product

and the dagger structure are compatible. That is, that −⊗− is a dagger-functor and

that the associator and unitors are unitary morphisms (their dagger is their inverse).

We have discussed why all of these properties are crucial for having a mathematical theory

of topological defects. We demand that the multiplicative unit 1 is a simple object, as it

corresponds to the vacuum which should not be able to be decomposed exactly into non-

trivial defects.

Combining semisimplicity, a monoidal product, rigidity, and unitarity facilitates a rich alge-

braic structure that has historically been of great use to physicists. First off, observe that

for any pair of simple objects a and b, their tensor product decomposes as a direct sum of

simples by semisimplicity:

a⊗ b =
⊕

c∈Irr(C)

N c
ab c (4.16)

for non-negative integers N c
ab. The collection of all such coefficients for simple a, b, and c

defines the fusion rules of the fusion category C. These fusion rules determine the multipli-

cation structure on the Grothendieck ring K0(C), whose elements are formal integer linear

combinations of isomorphism classes of objects, with product defined by

[a] · [b] =
∑

c∈Irr(C)

N c
ab[c]. (4.17)

If you have any familiarity with quantum field theory, you may notice a strong resem-

blance between fusion rules and Feynman rules. In fact, Feynman diagrams for the Stan-

dard Model are essentially wire diagrams in our graphical calculus, but for the category

Rep(P × U(1)× SU(2)× SU(3)), where P is the Poincaré group.

We will not prove it here, but there is a beautiful result known as Ocneanu rigidity which

states that for a given collection of fusion rules, there are only finitely many possible fusion

categories that can be associated to them [27]. In other words, fusion categories are very

rigid objects that cannot be deformed continuously. This makes their application to physics

uniquely powerful, as there is no such thing as fine-tuning parameters to make the math

match up with experiment – either the math describes the real world exactly or it does not

describe it at all!

Observe that for any simple object a ∈ Irr(C) and any other object b ∈ C, we can endow the

vector space Hom(a, b) with an inner product via:

⟨φ |ϕ⟩ = φ† ◦ ϕ ∈ Hom(a, a) = C (4.18)
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for every φ, ϕ ∈ Hom(a, b), where the last equality follows from the fact that a is a simple

object. Using this, for any object x in a fusion category, we have two ways of mapping it to

a positive real number: namely, x 7→ evx∨ ◦ coevx ∝ ⟨coevx |coevx⟩ and x 7→ evx ◦ coevx∨ ∝
⟨coevx∨ |coevx∨⟩, given in the graphical calculus by:

x∨ x

evx∨ ◦ coevx

x x∨

evx ◦ coevx∨

These two expressions are not inherently equal, but we have the freedom to scale coevx 7→
α · coevx and evx 7→ α−1 · evx along with coevx∨ 7→ β · coevx∨ and evx∨ 7→ β−1 · evx∨ for

α, β > 0 such that the two expressions become equal, while leaving all of the snake equations

intact. If we do this for every x, we can then refer unambigously to dx := evx∨ ◦ coevx as

the quantum dimension of x. From now on, we will take this normalization condition to

be included in the definitions of evx and coevx for every x. We define the dimension of a

unitary fusion category to be given by:

dim C =
∑

c∈Irr(C)

d2c (4.19)

Remark.

The dimension of a simple object is sometimes defined differently. Observe that for

any simple object c, its fusion rule N c
ab is simply a matrix whose indices are labeled by

the simple objects a and b. Since all of the entries of this matrix are manifestly non-

negative, one can define the Frobenius–Perron dimension FPdim(c) as the largest positive

eigenvalue of the fusion matrix N c which is guaranteed to exist the Perron-Froebenius

Theorem.

This assignment extends uniquely to a ring homomorphism FPdim : K0(C) → R≥0

and agrees with the dimension defined categorically via the composition evc ◦ coevc. In
unitary fusion categories, the two notions coincide.

More generally, for any morphism f : x → x, where x is any object in C, we can take its

trace via:

tr(f) := fx∨

x

x

= f x∨

x

x

where the two expressions above are equal as long as we consider the evaluation and co-

evaluation maps are defined to be normalized as we did above. It is fairly straightforward

to show that this definition indeed satsifies the usual cyclic property of the trace in linear

algebra.
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Before we get back into physics, there are two more important things to note. First off,

for all simple objects a, b, c ∈ Irr(C), we can choose an orthonormal basis Babc for the N c
ab

dimensional Hilbert space Hom(c, a ⊗ b), using the inner product in Eq. 4.18. Then, we

have the following relation, which we refer to as the fusion relation:

a b

=
∑

c∈Irr(C)

∑
ϕ∈Bab

c

a b

a b

c

ϕ†

ϕ

(4.20)

We can see this from the algebraic point of view, as for every c′ ∈ Irr(C) if we take any

φ ∈ Babc and compose φ† with the RHS of 4.20, then we have:∑
c∈Irr(C)

∑
ϕ∈Bab

c

(φ† ◦ ϕ) ◦ ϕ†δc= c′ =
∑
ϕ∈Bab

c′

⟨φ |ϕ⟩ ◦ ϕ†

=
∑
ϕ∈Bab

c′

ϕ†δφ=ϕ = φ† (4.21)

Since it acts as the identity on every basis element of each of the Hom-space for every simple

object, the RHS of Eq. 4.20 is equal to ida⊗b as desired.

The last important thing we want to define is perhaps the most important underlying piece

of data of any modern physical theory, the 6j symbols (or more generally, the F-symbol).

Independently discovered by Wigner in 1940 [28] and Racah in 1942 [29] to describe asso-

ciativity of SU(2) representations in the quantum theory of angular momenta, 6j symbols

have since found uses in theories of quantum gravity, rational conformal field theories, and

topological order.

Observe that for any simple objects a, b, c, d ∈ Irr(C), there are two distinct orthonormal

bases for Hom(a→ b⊗ c⊗ d) given by: ϕ

φ

b

a

c d

e

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e ∈ Irr(C)

φ ∈ Bcde

ϕ ∈ Bbea


and

 σ

τ

b

a

c d

f

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ∈ Irr(C)

σ ∈ Bfda

τ ∈ Bbcf


(4.22)

Thus, for each a, b, c, d ∈ Irr(C), there must exist a unitary operator that maps between

these two bases:

F bcda :
⊕

e∈Irr(C)

Hom(a, b⊗e)⊗Hom(e, c⊗d) −→
⊕

v∈Irr(C)

Hom(a, f⊗d)⊗Hom(f, b⊗c) (4.23)
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This unitary operator maps one basis vector to another via the following expression in terms

of matrix elements:

σ

τ

b

a

c d

f
=

∑
e∈Irr(C)

∑
φ∈Bcd

e

∑
ϕ∈Bbe

a

(
F bcda

)(f ;σ,τ)
(e;ϕ,φ)

ϕ

φ

b

a

c d

e
(4.24)

Taking the inner product with a certain orthonormal basis vector on the right hand side

gives us the following complicated, but beautiful expression for the F-symbol:

(
F bcda

)(f ;σ,τ)
(e;ϕ,φ)

ida =

σ

τ

φ†

ϕ†

a

f
d

c

e

b

a

(4.25)

With this, we have built from the ground up, a complete general mathematical structure

to describe topological defect lines in 2 dimensional physical systems. There is currently a

lot of work being done to define mathematical structures that can describe defects in higher

dimensions [30], [4].

The idea is that if we consider a (d + 1)-dimensional theory, then its topological defects

will be described by a d-fusion-category. A d-category not only has objects and morphisms,

but also morphisms between morphisms called 2-morphisms, morphisms between different

2-morphisms called 3-morphisms, and so on, up until d-morphisms. In a d-fusion-category

of topological defects, the objects will be codimension 1 defects, the 1-morphisms will be

codimension 2 defects which are the interfaces between two higher dimensional defects, and

so on, with d-morphisms being 0 dimensional points at the interface between two lines.

Building higher dimensional mathematics and finding concrete, computable examples of

these higher structures appears to be the key to advancing our understanding of non-

perturbative physics.

4.5 An In-Depth Look at Topological Defects in the 2d

Classical Ising Model

We briefly discussed topological defects in the 1d quantum Ising model in the last chapter.

However, it is much more intuitive to work with topological defects in 2 dimensions, when
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time and space are on the same footing. While one may think that we need to pass to the

conformal field theory setting – in which space and time are both continuous variables –

to do so, there is actually a rich notion of topological defects even in the 2d classical Ising

model! In fact, it was found recently that much of the rich structure in the Ising CFT can

be seen even in the classical model by considering the fusion of topological defects on the

lattice [31], [32]. This section will closely follow the recent paper [33], providing additional

commentary along the way to tie it in with the goal of the thesis.

We begin by considering the 2d classical Ising model on a square lattice with periodic

boundary conditions in zero magnetic field. For each pair of spins σi, σj or, equivalently,

each link ⟨ij⟩ of the lattice, there is a weight of eKσiσj contributed to each term of partition

function. Then, the partition function is given by:

Z(K) =
∑
[σ]

∏
⟨ij⟩

eKσiσj

∏
i

di (4.26)

where di ∈ C∗ is a constant factor which we have the freedom to include without changing

the partition function. Morally, it can be set to 1 for all i, but other values will be useful if

the partition function has any defects. The notation here is intentionally suggestive of the

quantum dimension from the previous section.

We know that in the 1d quantum Ising model, the global Z2 symmetry can be reconstructed

from local defects on links. Recall that if a defect was present on a link, then the local

term of the Hamiltonian supported on the link was modified as σzi σ
z
i+1 7→ −σzi σzi+1. Since

the rows configurations of the 2d classical Ising model in the transfer matrix picture are

formally equivalent to that of a 1d quantum Ising model, we may expect that this defect

will also arise in the classical case.

Indeed, if we fix a path γ on the dual lattice, there is a topological defect Dϵ(γ) which

acts by changing the weight of each link of the original lattice ⟨ij⟩ that it intersects via

eKσiσj 7→ e−Kσiσj . We write the denote the resulting modified partition function by ZDϵ(γ).

Dϵ(γ) is topological as can be deformed locally as in Figure 4.7 at any point without changing

the partition function:

Figure 4.7: Local deformation of Dϵ(γ) to Dϵ(γ′)

This follows from the fact that if the sites where the deformation happens are labeled as in



CHAPTER 4. FUSION CATEGORIES AND TOPOLOGICAL DEFECTS 63

Figure 4.8, then we can pull out the factors of the partition which have σ0 and then sum

over just σ0 portion of [σ] to see that:∑
σ0=±1

e−Kσ1σ0e−Kσ2σ0eKσ3σ0eKσ4σ0 =
∑
σ0=∓1

eKσ1σ0eKσ2σ0e−Kσ3σ0e−Kσ4σ0 (4.27)

where all we did was rename σ0 7→ −σ0. This immediately implies that the deformation in

Figure 4.7 holds, i.e:

ZDϵ(γ) = ZDϵ(γ′) (4.28)

Figure 4.8: Close-up of Figure 4.7 at the site of deformation

From the exact same trick of renaming the spin of a single site σ0, we can also deform Dϵ(γ)
locally as:

Figure 4.9: Other kind of local deformation of Dϵ(γ)

More interestingly, we also have the relations in Fig. 4.10, which we refer to as the bubble-

popping and the recoupling relations:

Figure 4.10: Bubble popping (left) and recoupling (right) relations for Dϵ

It’s important to note that any expectation values or spin correlation functions are also
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invariant under the deformation of topological defects, so long as there are none of the

inserted spins are in the way of the deformation. For instance, consider the correlation

function:

⟨σiσj⟩ =
1

Z(K)

∑
[σ]

σiσj
∏
⟨kl⟩

eKσkσl

∏
i

di (4.29)

Clearly, none of the relations in Figures 4.8, 4.9, or 4.10 will hold on sites i or j, as simply

renaming σi or σj would change the relative sign of the terms in the partition function.

We visualize these operator insertions as punctures on sites which we cannot freely deform

defect lines across.

Figure 4.11: Operator insertion of σi

From Eq. 4.29 it is clear, however, that we can freely deform the defect at any vertices that

do not have operators inserted without changing the partition function.

Now, observe that bubble popping and recoupling relations imply that Dϵ is locally in-

vertible, as can be seen in Figure 4.12. That is, within a small patch of the lattice with

no operator insertions and no global topological obstructions, the presence of two adjacent

parallel Dϵ lines has cancel to the trivial defect. This reflects the fusion rule of the corre-

sponding topological line defects: applying the spin-flip symmetry twice returns the system

to its original configuration. Thinking in terms of fusion categories, we say that:

Dϵ ⊗Dϵ ≃ 1 (4.30)

Figure 4.12: Local cancellation of two parallel Dϵ defects
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Remark.

It is important to note that there is some subtlety here. If the Dϵ lines are finite in

extent —that is, they are do not form closed loops around the torus or do not stretch

from boundary to boundary —then this cancellation is incomplete. One can locally apply

the reconnection move and deform the lines outward, but there will always remain two

endpoints where the defect lines began and ended. These endpoints are not topologically

trivial: they may carry nontrivial data, or require operator insertions to fully absorb the

defect.

Similarly to what we did in the 1d quantum case, we can also gauge the global Z2 symmetry

in the 2d classical case. In fact, this leads to another topological defect that is associated

with Kramers-Wannier duality!

We begin by defining the non-simple defect A = 1⊕Dϵ, where 1 refers to the trivial defect.

To do so, we choose a path γ on the dual lattice and assign a Z2 variable sl ∈ {±1} to each

edge l of the path. A then modifies the weight of each link that it crosses via:

eKσiσj 7→ eslKσiσj (4.31)

effectively acting as 1 if sl = +1 and as Dϵ if sl = −1. As A is a direct sum, we want the

1 and Dϵ components to be somewhat disjoint; it does not make sense to have a path that

alternates between acting trivially and non-trivially on every other site, for instance. Thus,

we enforce that at at each point, the two adjacent edge labels sl and sl′ have to agree. Thus,

the path is either entirely Dϵ or entirely 1.

We then implement A by summing over all configurations [s] of the edge variables along the

path subject to the constraint above, which gives rise to the direct sum.

Now, we also want to define junctions between two paths; these will play the role of the

Gauss Laws in the 1d case. To a trivalent junction at a vertex v on the dual lattice with

edge labels as in Figure 4.13 below, we assign a weight of:

1√
2
δ(s1s2s3, 1) (4.32)

which serves to ensure that three A defects can only meet at a vertex if they are consistent

with the fusion rules, just as we did with the Gauss law in the previous section.

Figure 4.13: Trivalent junction of A defects (purple lines) at a vertex v



CHAPTER 4. FUSION CATEGORIES AND TOPOLOGICAL DEFECTS 66

This implies the following local relation for the A defects in Figure 4.14. In equation form,

this is simply saying that summing over s2 and s3 in the left-most diagram with combined

weight:

1

2
δ(s1s2s3, 1)δ(s2s3s4, 1) (4.33)

gives two terms which enforce the relation s1 = s4.

Figure 4.14: Canceling loops of A defects

With this identity, we can consistently define a four-valent vertex in terms of 2 trivalent

vertices, as in Figure 4.15:

Figure 4.15: Definition of four-valent vertex of A defects

From this, it is straight forward to find that the weight of the four-valent vertex with edge

labels s1, · · · , s4 is given by:

1

2
δ(s1s2s3s4, 1) (4.34)

This just says that there should be an even number of −1 edge labels surrounding each

vertex. This is the exact same condition we found for the kl variables on the links way back

in our original derivation of Kramers-Wannier duality! Thus, we know that this condition

means that configurations with closed loops of Dϵ defects are the only terms which will

contribute to the partition function

We can now finally implement gauging through defects. Consider a network of A defects

inserted on every link of the dual lattice below a certain horizontal line G on the dual lattice:
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Figure 4.16: Gauging via network of A defects

This modifies the partition function as:∑
[s]

∑
[σ]

∏
v

1

2
δ(se1se2se3se4 , 1)

∏
⟨ij⟩ aboveG

es⟨ij⟩σiσj

∏
⟨kl⟩ aboveG

eσkσl

∏
i

di (4.35)

where the product over v denotes vertices v of the dual lattice surrounded by edges e1, · · · , e4.

Recall the identification of the vertical axis of the 2d classical Ising model with the imaginary

time in the 1d quantum model. Thus, placing a network of A defects below a certain

horizontal line is simply a graphical representation of applying the gauging map to the

Hilbert space of the usual 1d quantum Ising model at a given moment in time.

The interface between H and Hgauged is in fact itself a topological defect! Indeed, observe

that we can deform the boundary between the network of A defects and the trivial defects

however we please while leaving the partition function in Eq. 4.35 invariant. Specifically,

we have the following local relations in Figure 4.17:

Figure 4.17: Local deformations of the gauging interface
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For instance, the first equality holds by performing the sum over the added defect, deforming

the Dϵ term in the sum back onto the original interface, and then simply relabeling the link

variable that it retracts to from sl 7→ −sl in the sum. The other equalities follow from the

same sorts of tricks of summing a link variable, deforming one of the terms, and relabeling.

We denote this topological boundary line between the network of A defects and the original

lattice by G, and refer to it as the gauging defect line. The fact that even the gauging map

has a topological interpretation speaks to the ubiquity of topological defects in physics.

Gauging is a very general procedure that applies to countless physical models, including

the standard model of particle physics. Thus, there is potentially a lot to gain from trying

to implement gauging as a topological interface in other lattice models and QFTs with

global symmetries. Similarly, that the gauging map has an associated topological defect

implies that even more exotic symmetries like Kramers-Wannier duality actually arise from

topological foundations just like traditional global symmetries like the Z2 symmetry.

Remark.

We will not show it here as we have none two very similar computations to derive

Kramers-Wannier duality in other ways, but it can be shown that there is an invertible

topological defect D supported diagonally between spins and dual spins (Figure 4.18)

that can be fused with G to swap the roles lattice and dual lattice and map the partition

function as:

Zgauged(K) 7→ Z̃(K̃) (4.36)

where Z̃(K̃) denotes an Ising model at the dual coupling K̃ whose spins lie on the dual

lattice [33].

Figure 4.18: Invertible D defect (orange line) mapping original gauged Ising model to

dual Ising model

This invertible defect D is simply a topological defect representation of the unitary oper-

ator U made up of Hadamards and controlled Z operators which we used in the previous

chapter to change basis from the gauged Hamiltonian to the dual Hamiltonian. The

composition of G and D is then the non-invertible KW map that implements Kramers-

Wannier duality.

The gauging defect line G has its own fusion rules which we can derive directly on the
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lattice. For instance, we can see that a gauging defect G with a Dψ defect running parallel

leaves G invariant:

Figure 4.19: Fusion of G and D

This follows from deforming the D defect downward into the gauging network using 4.9 and

then relabeling sl 7→ −sl for every link variable on the boundary of the interface (since the

deformation switches their sign). This can be summarized by the fusion rule:

G⊗Dϵ ≃ Dϵ ⊗G ≃ 1 (4.37)

We can also fuse two parallel gauging defects. Consider a gauging defect G and another

G∗ whose interface is on the adjacent site to G’s but whose gauge network extends in the

opposite direction, as in Figure 4.20:

Figure 4.20: Two adjacent gauge interfaces fusing together

As we can see, by deforming the boundaries of the two interfaces, connecting them, using

the loop cancellation rule from Figure 4.14, and then pulling back the remaining gauge

interfaces, we find that we have the local fusion rule:

G⊗G ≃ A = 1⊕Dϵ (4.38)

Thus, the gauge defect G is non-invertible, as there is no object that it can fuse with to

yield the trivial defect on its own. The best we can do is fuse it with another gauge defect
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G∗ to obtain a direct sum of the trivial defect and the Z2 defect. This exactly matches our

findings regarding the gauging map in the 1d quantum case.

To summarize, starting from the symmetries of the 2d classical Ising model we were able to

find three simple topological defects: the Z2 defect Dϵ, the gauging defect G, and the trivial

defect 1. These three defects obey the following non-trivial fusion rules:

Dϵ ⊗Dϵ ≃ 1 Dϵ ⊗G ≃ G⊗Dϵ ≃ 1 G⊗G ≃ 1⊕Dϵ (4.39)

These a fusion rules generate a fusion category Ising, whose F-symbols and quantum di-

mensions can actually be found directly from local interactions on the lattice!

If you recall, these are the exact same fusion relations of the primary fields or Verlinde lines

the Ising CFT! In fact, it was found in that by viewing the spin-flip and gauge/duality defects

in terms of Dehn twists of the torus and manipulating these defects using the F symbols, we

can exactly derive the conformal weights 1
2 and 1

16 of the corresponding primary operators

in the Ising CFT [31]. The fact that we can derive much of the rich algebraic structure of

the Ising CFT directly from the associated classical Ising model —not even at criticality

—suggests that much of the rich algebraic structure of conformal field theory may not be

inherent results of its conformal symmetry. The fundamental aspects of solvable QFTs

appear to be more dependent on topological defects and the categorical data that governs

their interactions.
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Conclusion

In this thesis, we explored how rich mathematical structures emerge from studying one of the

simplest models in statistical mechanics: the two-dimensional Ising model. Beginning with

an information-theoretic formulation of classical statistical mechanics, we examined how the

Ising model encodes symmetries and dualities that extend naturally into the quantum and

continuum settings.

Through the transfer matrix formalism, we connected the 2D classical Ising model to the

1D quantum transverse field Ising chain, and from there, followed a path through duality

transformations and fermionization techniques to arrive at the free Majorana fermion con-

formal field theory. Along the way, we saw how global symmetries of a Hamiltonian can

be completely reconstructed from local topological defects. We also saw how summing over

the insertions of topological defects on the links of the lattice and imposing a Gauss law,

a process known as gauging, is the most natural way of thinking about Kramers-Wannier

duality.

This discussion motivated the introduction of category theory as a framework for under-

standing symmetries and defects in a more general and abstract way. Starting from ordinary

categories, we defined properties and structures like direct sums, idempotent completeness,

and semisimplicity to lead us to the notion of 2-vector spaces —a higher dimensional notion

of usual vector spaces better equipped to deal with the problems of the modern theoretical

physicist. On top of this, we also defined a monoidal product which came with a graphi-

cal calculus that gave credence to our hypothesis about category theory being the natural

language of topological defects. We then explained the notion of rigidity in a monoidal

category and formally defined unitary fusion categories. After studying some properties of

unitary fusion categories, we jumped right back into the 2d classical Ising model with our

newfound knowledge. We saw how there exists three simple defects in the 2d Ising model

—the trivial defect, the Z2 defect, and the gauging, or KW, defect —which fuse together

when on adjacent links according to the fusion rules of the Ising fusion category.

While many of the results presented are known, the goal of this thesis was to bridge a gap

that I perceived to be missing in the literature. Namely, a self-contained and physically

motivated introduction to topological defects and categorical symmetries. My hope is that

71
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this thesis serves as a coherent narrative which builds up toward the categorical language

that underlies modern approaches to quantum field theory and lattice models.
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